The Snek Programming Language

A Python-inspired Embedded Computing Language
Keith Packard

Version v1.13, 2025-09-05






Table of Contents

LiCeNS e . 1
Acknowledgments . . .. 2
1. History and Motivations . . ... ... 3
1.1. Arduino in the Lego Program . .. .. .. .. 3
T.2.ANew Language . . . ... 4
1.3.Introducing Snek. . . .o 4
2. A Gentle Snek Tutorial. . . ... 5
2.0 Hello World .« . oo 5
2.2.Variables. 6
2.3, FUNCLIONS oo 6
2.4.Simple Arithmetic . .. ... 7
2.5. Loops, Ranges and Printing Two Values . . ... ... ... . ... . 8
2.6. Lists and Tuples. . . ... 9
2.7.DICtioNaries . . . .. 11
2. 8. While. . 12
728 R | 13
2.10. Controlling GPIOS . . . ..o 14
Snek Reference Manual. . . ... 17
3.Lexical Structure ... 19
3 NUMberS 19

3.2 NAMIBS o 19

3.3 KeYWOIdS . oo 20

3.4, PUNCLUAtioON. .« .o 20

3.5. White Space (Spaces and Newlines) .. ... ... ... . 20
3.6.String CoNstants. . .. .. 21

3.7. Listand Tuple Constants. . ... ... ... 21

3.8. Dictionary Constants. . . ... . 22

4. Data TYPES . ..o 23
4.0, Lists and TUpPleS . . .. 23

5. 0PEratorsS « . .o 25
5.0, SliCeS 27
5.2.String Interpolation . ... ... 28

6. Expression and Assignment Statements . ... ... 31
7.CoNtrol FlowW . . oo 33

7250 1 33

72 Wha e, 33

728 T o 34

TA. returnvalue ... 35

7285 TR 1 == 1 < 35



0 0 = 1= 37
8. Other Statements . . . ... 39
. l.Amportname .. .. 39
8.2. fromname import * . . 39
8.3.globalname [, name ...] ... .. . . . . 39
8.4.del location ... .. ... . . 40
8.5.assert value . ... 40
0. FUNCLIONS . . o 41
Ol de T 41
10. Standard Built-in Functions . . ... ... . 43
10.1. Len (Value) . .o 43
10.2. print(valuel , “value2,..,end="\n") ... ... .. . .. . . ... ... 43
10.3.sys.stdout. flush (). ... ... 43
10.4.0rd (SriNg ) .. oo 43
10.5. chr( number ) . ... 44
10.6.abs (number ) .. . 44
10.7.sqrt(number ) . ... 44
11. Common System FUNCLIONS . . . . .. 45
11 exit(value ) ... 45
11.2.5Leep(Seconds ). . ... 45
11.3.monotoNIC (). . oo 45
T1.4.seed ( seed ). . ... 45
T1.5. random () . ..o 45
11.6. randrange( max ) .. ... 46
12.INpuUt FUNCLIONS . oo 47
12 0. Float (value ) ... 47
12.2.0nput ( prompt ) ..o 47
13. Math FUNCLIONS . . .. 49
13.1. Number-theoretic and representation functions .. .......... ... ... ... ... ... ...... 49
13.2. Power and logarithmic functions. . . ... .. .. 50
13.3. Trigonometric fuNCtions . . . .. ... 51
13.4. ANgUIar CONVEIrSION . ... .o 51
13.5. Hyperbolic functions . . .. ... 51
13.6. Special functions .. .. ... 52
13.7. Mathematical constants . .. ... .. .. 52
T4, GPIO FUNCLIONS . . o 53
14.0. talkto( pin ) 53
14.2. setpower( POWer ) . ... ... 53
14.3. setleft () ..o 53
144, setright () . ... 53

T4, 5. ON () . o 53



14.6. of ()
14.7. onfor( seconds )
14.8. read( pin )
14.9. pullnone( pin )
14.10. pullup( pin)
14.11. pulldown ( pin )
14.12. stopall()
14.13. neopixel ( pixels )
14.14. tone( frequency )
14.15. tonefor( frequency , seconds )
14.16. Musical note constants
15. EEPROM built-in functions
15.1. eeprom.write()
15.2. eeprom.show()
15.3. eeprom. load ()
15.4. eeprom.erase()
15.5. reset ()
16. Temperature Conversion Function
16.1. temperature( sensorvalue )
17. Curses built-in functions
17.1. curses.initscr()
17.2. curses.endwin()
17.3. curses.noecho(), curses.echo(), curses.cbreak(), curses.nocbreak()
17.4. stdscr.nodelay( nodelay )
17.5. stdscr.erase()
17.6. stdscr.addstr( row , column , string )
17.7. stdscr.move( row , column )
17.8. stdscr.refresh()
17.9. stdscr.getch()
18. Snek Development Environment
18.1. Starting Snekde
18.2. Basic Navigation
18.3. Connecting to a Device
18.4. Getting and Putting Programs to a Device
18.5. Loading and Saving Programs to the Host
Appendix A: Snek on snekboard
Appendix B: Snek on Arduino Duemilanove, LilyPad, Nano and Uno
B.1. Installing Optiboot on ATMega 328 boards
B.2. Installing Snek on ATMega 328 boards
Appendix C: Snek on Adafruit ItsyBitsy and the Crowd Supply pduino
Appendix D: Snek on Adafruit ItsyBitsy MO
Appendix E: Snek on Arduino Mega

53
54
54
54
54
54
54
54
55
55
55
57
57
57
57
57
57
59
59
61
61
61

61
61
61
61
62
62
63
63
63
63
64
64
65
66
66
66
69
71
72



Appendix F: Snek on Arduino Nano Every

Appendix G: Snek on Metro MO Express

Appendix H: Snek on Feather MO Express

Appendix I: Snek on Adafruit Crickit

Appendix J: Snek on Adafruit Circuit Playground Express
Appendix K: Snek on Arduino SA Nano 33 loT

Appendix L: Snek on Lego EV3

Index

73
74
75
76
77
79
80
83



License 1

License
Copyright © 2019 Keith Packard

This document is released under the terms of the GNU General Public License, Version 3 or later
[https://www.gnu.org/licenses/gpl-3.0.en.html]

GNU General Public License Version 3 or later 1


https://www.gnu.org/licenses/gpl-3.0.en.html

2 The Snek Programming Language

Acknowledgments

Thanks to Jane Kenney-Norberg for building a science and technology education program using
Lego. Jane taught my kids science in elementary school and Lego after school, and let me come and
play too. I'm still there helping and teaching, even though my kids are nearly done with their
undergraduate degrees.

Thanks to Christopher Reekie and Henry Gillespie who are both students and student-teacher in
Jane's program and who have helped teach Arduino programming using Lego robots. Christopher
has also been helping design and test Snek.

Keith Packard
keithp@keithp.com
https://keithp.com

2 © 2019 Keith Packard


mailto:keithp@keithp.com
https://keithp.com

Chapter 1. History and Motivations 3

Chapter 1. History and Motivations

Teaching computer programming to students in the 10-14 age range offers some interesting
challenges. Graphical languages that construct programs from elements dragged with a mouse or
touch-pad can be frustratingly slow. Users of these languages don’t develop portable skills
necessary for more advanced languages. Sophisticated languages like C, Java and even Python are
so large as to overwhelm the novice with rich semantics like “objects” and other higher level
programming constructs.

In days long past, beginning programmers were usually presented with microcomputers running
very small languages: BASIC, Forth, Logo or the like. These languages were not restricted to aid the
student, but because the hosts they ran on were small.

Introductory programming is taught today in a huge range of environments, from embedded
systems to cloud-based systems. Many of these are technological dead-ends — closed systems that
offer no way even to extract source code, much less to reuse it in another environment.

Some systems, such as Raspberry Pl and Arduino, are open — they use standard languages so that
skills learned with them are useful elsewhere. While the smallest of these machines are similar in
memory and CPU size to those early microcomputers, these smaller machines are programmed as
embedded computers using a full C++ compiler running on a separate desktop or laptop system.

1.1. Arduino in the Lego Program

| brought Arduino systems into the classroom about five years ago. The hardware was fabulous and
we built a number of fun robots. After a couple of years, | built some custom Arduino hardware for
our needs. Our hardware has screw terminals for the inputs and outputs, a battery pack on the
back and high-current motor controllers to animate the robots. Because these platforms are
Arduino (with an ATmega 328P processor and a FTDI USB to serial converter) we can use the stock
Arduino development tools.

Students struggled with the complex syntax of Arduino C: they found it especially hard to type the
obscure punctuation marks and to remember to insert semicolons. | often heard comments like
“this takes too much typing” and “why is it so picky about semicolons?” The lack of an interactive
mode made experimenting a bit slower than on our Logo systems. In spite of the difficulties, there
have been students who have done interesting projects in Arduino robotics:

e Chris Reekie, an 11th-grade student-teacher in the program, took the line follower robot design
and re-wrote the Arduino firmware to include a PID controller algorithm. The results were
spectacular, with the robot capable of smoothly following a line at high speed.

e Henry Gillespie, another 11th-grade student-teacher, created a robot that automatically
measured a person’s height. This used an optical sensor to monitor movement of a beam as it
lowered onto the person’s head and showed measurements on an attached 7-segment display.
We've shown this device at numerous local Lego shows.

e Mark Fernandez, an eighth-grade student, built a solar energy system that automatically tracked
the sun. Mark is now a mechanical engineering student at Washington University in St Louis.

The hardware was just what we wanted, and a few students used skills learned in the program later
on. However, the software was not aimed at young students just starting to write code. Instead of

GNU General Public License Version 3 or later 3



4 The Snek Programming Language

throwing out our existing systems and starting over, | wondered if we couldn’t keep using the same
(hand-made) hardware but improve the programming environment.

1.2. A New Language

| searched for a tiny programming language that could run on Arduino and offer an experience
more like Lego Logo. | wanted something that students could use as a foundation for further
computer education and exploration, something very much like Python.

There is a smaller version of Python, called MicroPython: it is still a fairly large language which takes
a few hundred kB of ROM and a significant amount of RAM. The language is also large enough that
we couldn’t cover it in any detail in our class time.

| finally decided to just try and write a small Python-inspired language that could fit on our existing
Arduino Duemilanove compatible hardware. This machine has:

e 32kB of Flash

e 2kB of RAM

e 1kB of EEPROM

o 1 serial port hooked to a USB/serial converter

e 1 SPlport

e 6 Analog inputs

¢ 14 Digital input/output pins

believe that shrinking the language to a small Python subset will let the language run on this
hardware while also being simple enough to expose students to the whole language in a small
amount of class time.

1.3. Introducing Snek
The goals of the Snek language are:

o Text-based. A text-based language offers a richer environment for people comfortable with
using a keyboard. It is more representative of real-world programming than building software
using icons and a mouse.

e Forward-looking. Skills developed while learning Snek should be transferable to other
development environments.

e Small. This is not just to fit in smaller devices: the Snek language should be small enough to
teach in a few hours to people with limited exposure to software.

Snek is Python-inspired, but it is not Python. It is possible to write Snek programs that run under a
full Python system, but most Python programs will not run under Snek.

4 © 2019 Keith Packard



Chapter 2. A Gentle Snek Tutorial 5

Chapter 2. A Gentle Snek Tutorial

Before we get into the details of the language, let's pause and just explore the language a bit to get
a flavor of how it works. We won't be covering anything in detail, nor will all the subtleties be
explored. The hope is to provide a framework for those details.

This tutorial shows what appears on the screen — both what the user types and what Snek
displays. User input is shown in bold face, like this on the lines which start with > or +.
Snek outputis shown in a lighter face, like this on other lines.

2.1. Hello World

A traditional exercise in any new language is to get it to print the words hello, world to the
console. Because Snek offers an interactive command line, we can actually do this in several ways.

The first way is to use Snek to echo back what you type at it. Start up Snek on your computer

(perhaps by finding Snek in your system menu or by typing snek at the usual command prompt).
When it first starts, Snek will introduce itself and then wait for you to type something.

Welcome to Snek version v1.13
>

At this "> " prompt, Snek will print anything you type to it:

> 'hello, world"
"hello, world!'

Here we see that Snek strings can be enclosed in single quotes. Strings can also be enclosed in
double quotes, which can be useful if you want to include single quote marks in them. Snek always
prints strings using single quotes, so the output here is the same as before.

> "hello, world"
"hello, world'

Snek is actually doing something a bit more complicated than echoing what you type. What you are
typing is called an “expression”, and Snek takes the expression, computes the value that it
represents and prints that out. In this case, the value of either "hello, world' or "hello,
world" is 'hello, world"'.

Stepping up a notch, instead of inputting 'hello, world' directly, we can write a more
complicated expression which computes it:

GNU General Public License Version 3 or later 5



6 The Snek Programming Language

> 'hello,"' + ' world'
"hello, world!'

At this point, we're using the feature of the interactive environment which prints out the value of
expressions entered. Let’s try using the print function instead:

> print('hello, world')
hello, world

This time, Snek printed the string without quote marks. That's because the print function displays
exactly what it was given without quote marks while the command processor prints values in the
same format as they would appear in a program (where you'd need the quote marks).

You might wonder where the value from evaluating the expression print('hello,
world') is printed. After all, Snek printed the value of other expressions. The answer is that

the print function evaluates to “no value”, and when Snek sees “no value”, it doesn't print
anything. We'll see this happen several more times during the tutorial.

2.2. Variables

Variables are Snek’s way of remembering things. Each variable has a name, like moss or tree, and

each variable can hold one. You set (or “assign”) the value of a variable using the = operator, and
you get the value by using the name elsewhere:

> moss = 'hello, world'
> moSsS
"hello, world!'

Snek creates a variable whenever you assign a value to it for the first time.

2.3. Functions

Let's define a function which uses print to print hello world and call it. To define a new function
in Snek, we use the def keyword like this:

> def hello():
+ print('hello, world')
+

6 © 2019 Keith Packard



Chapter 2. A Gentle Snek Tutorial 7

> hello()
hello, world

There's lots of stuff going on here. First, we see how to declare a function by using the def keyword,
followed by the name of the function, followed by the “arguments” in parentheses. We'll talk about

arguments in the next section, Simple Arithmetic. For now just type (). After the arguments there’s
a colon.

Colons appear in several places in Snek and (outside of dictionaries) are used in the same way.
After a colon, Snek expects to see a list of statements. The usual way of including a list of
statements is to type them, one per line, indented from the line containing the colon by a few
spaces. The number of spaces doesn't matter, but each line has to use the same indentation. When
you're done with the list of statements, you enter a line with the old indentation level.

While entering a list of statements, the command processor will prompt with + instead of > to let
you know that it's still waiting for more input before it does anything. A blank line ends the list of

statements for the hello function and gets you back to the regular command prompt.
Finally, we call the new hello function and see the results.

Snek normally ends each print operation by moving to the next line. That's because the print
function has a named parameter called end which is set to a newline (‘\n") by default. You can
change it to whatever you like, as in:

> def hello():

+ print('hello’, end=',")

+ print(' world', end='\n')
+

> hello()

hello, world

The first call appends a , to the output, while the second call explicitly appends a newline
character, causing the output to move to the next line. There are a few characters that use this
backslash notation; those are described in the section on String Constants.

2.4. Simple Arithmetic

Let's write a function to convert from Fahrenheit temperatures to Celsius. If you recall, that's:
°C=(5/9)(°F - 32)

Snek can't use the ° sign in variable names, so we'll just use C and F:

> # Convert from Fahrenheit to Celsius

GNU General Public License Version 3 or later 7



8 The Snek Programming Language

def f_to_c(F):
return (5/9) * (F - 32)

f_to_c(38)
.333333

The # character introduces a comment, which extends to the end of the line. Anything within a
comment is ignored by Snek.

The f to c function takes one “argument” called F. Inside the function, F is a variable which is set
to the value you place inside the parentheses when you call f to_c. In this example, we're calling
f to c with the value 38. Snek gets the value 38 from F whenever Snek finds it in the function:

+ return (5/9) * (F - 32)
return (5/9) * (38 - 32)

return 3.333333

Snek requires an explicit multiplication operator, *, as it doesn't understand the mathematical
convention that adjacent values should be multiplied. The return statement is how we tell Snek that
this function computes a value that should be given back to the caller.

Numbers in Snek may be written using as a separator, which is especially useful when writing
large numbers.

# you can write

c = 299 792 458

# and Snek will interpret as
Cc = 299792458

vV V. VvV V

2.5. Loops, Ranges and Printing Two Values

Now that we have a function to do this conversion, we can print a handy reference table for offline
use:

> # Print a handy conversion table
> def f_to_c_table():

+ for F in range(0, 100, 10):

+ C = f_to _c(F)

8 © 2019 Keith Packard



Chapter 2. A Gentle Snek Tutorial 9

+ print('sf F = %f C' % (F, C))
+

> f_to_c_table()

0.000000 F = -17.777779 C

10.000000 F = -12.222223 C
20.000000 F = -6.666667 C
30.000000 F = -1.111111 C
40.000000 F = 4.444445 C

50.000000 F = 10.000000 C
60.000000 F = 15.555556 C
70.000000 F = 21.111113 C
80.000000 F = 26.666668 C
90.000000 F = 32.222225 C

We see a new statement here: the for statement. This walks over a range of values, assigning the
control variable (F, in this case) to each of the values in the range and then evaluating the list of
statements within it. The range function creates the list of values for F by starting at the first value
and stepping to just before the second value. If you give range only two arguments, Snek will step
by 1. If you give range only one argument, Snek will use 0 as the starting point.

We need to insert the numeric values into the string shown by print. Many languages use a special
formatted-printing function to accomplish this. In Snek, there's a more general-purpose mechanism
called “string interpolation”. String interpolation uses the % operator. Snek walks over the string on
the left and inserts values from the list of values enclosed in parenthesis on the right wherever

there is a % followed by a character. The result of string interpolation is another string which is then
passed to print, which displays it.

How the values are formatted depends on the character following the % mark; that's discussed in
the String Interpolation section. How to make that set of values on the right is discussed in the next
section, Lists and Tuples

2.6. Lists and Tuples

Lists and Tuples in Snek are closely related data types. Both represent an ordered set of objects.
The only difference is that Lists can be modified after creation while Tuples cannot. We call Lists
“mutable” and Tuples “immutable”. Lists are input as objects separated by commas and enclosed in
square brackets, Tuples are input as objects separated by commas and enclosed in parentheses:

[ 'hello,', ' world' 1]
"hello, ', ' world']
( "hello,', ' world' )
"hello,', ' world')

GNU General Public License Version 3 or later 9



10 The Snek Programming Language

Let's assign these to variables so we can explore them in more detail:

> 1
> t

[ "hello,"', ' world' ]
( "hello,', ' world' )

As mentioned earlier, Lists and Tuples are ordered. That means that each element in a List or Tuple
can be referenced by number. This number is called the index of the element, in Snek, indices start
at 0:

> 1[0]
'hello, "'
> t[1]
" world'

Lists can be modified, Tuples cannot:

> 1[0] = 'goodbye, "’

> 1

[ 'goodbye,', ' world']

> t[0] = 'beautiful’

<stdin>:5 invalid type: ('hello,', ' world')

That last output is Snek telling us that the value (‘hello’, ' world'") cannot be modified.

We can use another form of the for statement to iterate over the values in a List or Tuple:

> def print_list(list):

+ for e in list:
+ print(e)

+

> print_list(1)
goodbye,

world

> print_list(t)
hello,

world

Similar to the form described in the Loops, Ranges and Printing Two Values section, this for
statement assigns the control variable (e in this case) to each of the elements of the list in turn and

10 © 2019 Keith Packard



Chapter 2. A Gentle Snek Tutorial 11

evaluates the statements within it.

Lists and Tuples can be concatenated (joined into a single thing) with the + operator:

> ['hello, '] + [' world']
["hello,', ' world']

Tuples of one element have a slightly odd syntax, to distinguish them from expressions enclosed in
parentheses: the value within the Tuple is followed by a comma:

> ( 'hello' , ) + ( 'world' , )
('"hello', 'world')

2.7. Dictionaries

Dictionaries are the fanciest data structure in Snek. Like Lists and Tuples, Dictionaries hold multiple
values. Unlike Lists and Tuples, Dictionaries are not indexed by numbers. Instead, Dictionaries are
indexed by another Snek value. The only requirement is that the index value be immutable, so that
it can never change. Lists and Dictionaries are the only mutable data structures in Snek: anything
else can be used as a Dictionary index.

The indexing value in a Dictionary is called the “key”, the indexed value is called the “value”.
Dictionaries are input by enclosing key/value pairs, separated by commas, inside curly braces:

> { 1:2, 'hello,' : ' world' }
{ 'hello,':"' world', 1:2 }

Note that Snek re-ordered our dictionary. That's because Dictionaries are always stored in sorted
order, and that sorting includes the type of the keys. Dictionaries can contain only one element with
a given key: you're free to specify dictionaries with duplicate keys, but only the last value will occur
in the resulting Dictionary.

Let's assign our Dictionary to a variable and play with it a bit:

d={1:2, 'hello,' : ' world' }

d['hello, ']

world'

d[1] = 3

d[ 'goodnight'] = 'moon'

-V NV V

vV VvV

GNU General Public License Version 3 or later 11



12 The Snek Programming Language

> d

{ 'goodnight':'moon', 'hello,':"' world', 1:3 }
> d[56]

<stdin>:7 invalid value: 56

This example shows creating the Dictionary and assigning it to d, then fetching elements of the
dictionary and assigning new values. You can add elements to a dictionary by using an index that is
not already present. When you ask for an element which isn't present, you get an error message.

You can also iterate over the keys in a Dictionary using the same for syntax used above. Let’s try
our print_list function on d:

> print_list(d)
goodnight
hello,

1

You can test to see if an element is in a Dictionary using the in operator:

> if 1 in d:

+ print('yup')
+ else:

+ print('nope')
+

yup

> if 56 in d:

+ print('yup')
+ else:

+ print('nope')
+

nope

2.8. While

The for statement is useful when iterating over a range of values. Sometimes we want to use more
general control flow. We can rewrite our temperature conversion chart program using a while loop
as follows:

> def f_to_c_table():

12 © 2019 Keith Packard



Chapter 2. A Gentle Snek Tutorial 13

+ F=20

+ while F < 100:

+ C =f to _c(F)

+ print('sf F = %f C' % (F, C))
+ F=F+ 10

+

> f_to_c_table()
0.000000 F = -17.777779 C

10.000000 F = -12.222223 C
20.000000 F = -6.666667 C
30.000000 F = -1.111111 C
40.000000 F = 4.444445 C

50.000000 F = 10.000000 C
60.000000 F = 15.555556 C
70.000000 F = 21.111113 C
80.000000 F = 26.666668 C
90.000000 F = 32.222225 C

This does exactly what the for loop did in the Loops, Ranges and Printing Two Values section: it first
assigns 0 to F, then iterates over the statements until F is no longer less than 100.

2.9. If

If statements provide a way of selecting one of many paths of execution. Each block of statements
is preceded by an expression: if the expression evaluates to True, then the following statements

are executed. Otherwise, the next test is tried until the end of the if is reached. Here's a function
which measures how many upper case letters, lower case letters and digits are in a string:

> def count_chars(s):

+ d=20

+ 1=0

+ u=2~20

+ o=20

+ for c in s:

+ if '0' <= c and c <= '9':
+ d += 1

+ elif 'a' <= c and c <= 'z"':
+ 1+=1

+ elif 'A' <= c and c <= 'Z"':
+ u+=1

GNU General Public License Version 3 or later 13



14  The Snek Programming Language

+ else:

+ o+=1

+ print('digits %d" % d)
+ print('lower %d" % 1)
+ print('upper %d" % u)
+ print('other %d" % o)
+

> count_chars('4 Score and 7 Years Ago')
digits 2

lower 13

upper 3

other 5

The elif statements try other alternatives if previous if tests have not worked. The else
statement is executed if all previous if and elif tests have not worked.

This example also introduces the less-than-or-equal comparison operator <= and demonstrates
that for v in a also works on strings.

2.10. Controlling GPIOs

General-purpose |0 pins, or “GPIOs”, are pins on an embedded processor which can be controlled
by a program running on that processor.

When Snek runs on embedded devices like the Duemilanove or the Metro MO Express, it provides

functions to directly manipulate these GPIO pins. You can use either of these, or any other device
which uses the standard Arduino pin numbers, for these examples.

2.10.1. Turning on the built-in LED

Let's start by turning on the LED which is usually available on Digital pin 13:

> talkto(D13)
> on()

Let's get a bit fancier and blink it:

> talkto(D13)
> while True:
+ onfor(.5)
+ sleep(.5)

14 © 2019 Keith Packard



Chapter 2. A Gentle Snek Tutorial 15

2.10.2. Hooking up a digital input

Find a bit of wire to connect from Digital pin 1 to GND and let’s control the LED with this primitive
switch:

> talkto(D13)
> while True:

+ if read(D1l):
+ on()

S else:

+ off()

When the wire is connected, the LED turns off, and when the wire is not, the LED turns on. That’s
how simple switches work on Arduino.

Snek repeatedly reads the input and sets the LED as fast as it can. This happens thousands of times
per second, giving the illusion that the LED changes the instant the switch changes.

2.10.3. Using an analog input

If you've got a light sensor or potentiometer, you can hook that up to Analog pin 0 and make the
LED track the sensor:

> talkto(D13)
> while True:
+ onfor(1l-read(A0))
+ sleep(l-read(A0))

2.10.4. Controlling motors

So far we've only talked about using one pin at a time. Arduino motor controllers take two pins: one
for power and one for direction. Snek lets you tell it both pins at the same time and then provides
separate functions to set the power and direction. If you have a motor controller hooked to your
board with pin 3 as power and pin 2 as direction you can run the motor at half power and have it
alternate directions with:

talkto((3,2))

setpower(0.5)

on()

while True:
setleft()
sleep(1l)

+ + v VvV VvV V

GNU General Public License Version 3 or later 15



16 The Snek Programming Language

+ setright()
+ sleep(1l)

16 © 2019 Keith Packard



17

Snek Reference Manual

The remainder of this book is a reference manual for the Snek language, including built-in functions
and the Snek development environment.

GNU General Public License Version 3 or later 17



18 The Snek Programming Language

18 © 2019 Keith Packard



Chapter 3. Lexical Structure 19

Chapter 3. Lexical Structure

Snek programs are broken into a sequence of tokens by a lexer. The sequence of tokens is
recognized by a parser.

3.1. Numbers

Snek supports 32-bit floating point numbers and understands the usual floating point number
format:

<integer><fraction><exponent>
123.456e+12

integer
A non-empty sequence of decimal digits

fraction
A decimal point (period) followed by a possibly empty sequence of decimal digits

exponent

The letter 'e' or 'E' followed by an optional sign and a non-empty sequence of digits indicating
the exponent magnitude.

All parts are optional, although the number must include at least one digit in either the integer part
or the fraction.

Floating point values (represented internally in IEEE 854 32-bit format) range from approximately

-1.70141e+38 to 1.70141e+38. There is 1 sign bit, 8 bits of exponent and 23 stored/24 effective
bits of significand (often referred to as the mantissa). There are two values of infinity (positive and
negative) and a “Not a Number” (NaN) value indicating a failed computation. Computations using
integer values will generate an error for values which cannot be represented as a 24-bit integer.
That includes values that are too large and values with fractional components.

3.2. Names

Names in Snek are used to refer to variables, both global and local to a particular function. Names
consist of an initial letter or underscore, followed by a sequence of letters, digits, underscore and
period. Here are some valid names:

hello
_hello
_h4
sqrt

GNU General Public License Version 3 or later 19



20 The Snek Programming Language

And here are some invalid names:

.hello
4square

3.3. Keywords

Keywords look like regular Snek names, but they are handled specially by the language and thus
cannot be used as names. Here is the list of Snek keywords:

and assert break continue
def del elif else

for from global if
import in is not

or pass range return
while

3.4. Punctuation

Snek uses many special characters to make programs more readable; separating out names and
keywords from operators and other syntax.

} + . * * % / // %
& ~ ~ << >> = +=

= K= ok — /= //= %= &= =

~= = <<= >>= > = < <=

== >= >

3.5. White Space (Spaces and Newlines)

Snek uses indentation to identify program structure. Snek does not permit tabs to be used for
indentation; tabs are invalid characters in Snek programs. Statements in the same block (list of
statements) are indented the same amount; statements in deeper blocks are indented more,
statements in shallower blocks less.

When typing Snek directly at the Snek prompt blank lines become significant, as Snek cannot know
what you will type next. You can see this in the Tutorial, where Snek finishes an indented block at
the blank line.

20 © 2019 Keith Packard



Chapter 3. Lexical Structure 21

When loading Snek from a file, blank lines (and lines which contain only a comment) are entirely
ignored; indentation of those lines doesn't affect the block indentation level. Only lines with Snek
tokens matter in this case.

Spaces in the middle of the line are only significant if they are necessary to separate tokens; you
can insert as many or as few as you like in other places.

3.6. String Constants

String constants in Snek are enclosed in either single or double quotes. Use single quotes to easily
include double quotes in the string, and vice-versa. Strings cannot span multiple lines, but you can
input multiple strings adjacent to one another and they will be merged into a single string constant
in the program.

\n
Newline. Advance to the first column of the next line.

\r
Carriage Return. Move to the first column on the current line.

\t

Tab. Advance to the next 'tab stop' in the output. This is usually the next multiple-of-8 column in
the current line.

\xdd
Hex value. Use two hex digits to represent any character.

\\
Backslash. Use two backslashes in the input to get one backslash in the string constant.

Anything else following the backslash is just that character. In particular:

\ll
Literal double-quote. Useful inside double-quoted strings.

Literal single-quote. Useful inside single-quoted strings.

3.7. List and Tuple Constants

List and Tuple constants in Snek are values separated by commas and enclosed in brackets: square
brackets for Lists, parentheses for Tuples.

Here are some valid Lists:

[1, 2, 3]
["hello', 'world']

GNU General Public License Version 3 or later 21



22 The Snek Programming Language

[12]

Here are some valid Tuples:

(1, 2, 3)
('hello', 'world')
(12,)

Note the last case — to distinguish between a value in parentheses and Tuple with one value, the
Tuple needs to have a trailing comma. Only single-valued Tuples are represented with a trailing
comma.

3.8. Dictionary Constants

Dictionaries in Snek are key/value pairs separated by commas and enclosed in curly braces. Keys
are separated from values with a colon.

Here are some valid Dictionaries:

{ 1:2, 3:4}
{ 'pi'" : 3.14, 'e' : 2.72 }
{ 1: 'one' }

You can include entries with duplicate keys: the resulting Dictionary will contain only the last entry.
The order of the entries does not matter otherwise: the resulting dictionary will always be the
same:

> { 1:2, 3:4 } == { 3:4, 1:2 }
1

When Snek prints dictionaries, they are always printed in the same order, so two equal dictionaries
will have the same string representation.

22 © 2019 Keith Packard



Chapter 4. Data Types 23

Chapter 4. Data Types

Like Python, Snek does not have type declarations. Instead, each value has an intrinsic
representation — any variable may hold a value with any representation. To keep things reasonably
simple, Snek has only a handful of representation types:

Numbers

Instead of having integers and floating point values, Snek represents numbers in floating point
as described earlier. Integer values of less than 24 bits can be represented exactly in these
floating point values: programs requiring precise integer behavior can still work as long as the
values can be held in 24-bits.

Strings
Strings are just lists of bytes. Snek does not have any intrinsic support for encodings. Because

they are just lists of bytes, you can store UTF-8 values in them comfortably. Just don't expect
indexing to return Unicode code points.

Lists

Lists are ordered collections of values. You can change the contents of a list by adding or
removing elements. In other languages, these are often called arrays or vectors. Lists are
“mutable” values.

Tuples

Tuples are immutable lists of values. You can't change a tuple itself once it is created. If any
element of the tuple is mutable, you can modify that element and see the changed results in the
tuple.

Dictionaries

A dictionary is a mapping between keys and values. They work somewhat like Lists in that you
can store and retrieve values in them. The index into a Dictionary may be any immutable value,
which is any value other than a List or Dictionary or Tuple containing a List or Dictionary.
Dictionaries are “mutable” values.

Functions
Functions are values in Snek. You can store them in variables or lists, and then fetch them later.

Boolean

Like Python, Snek doesn't have an explicit Boolean type. Instead, a variety of values work in
Boolean contexts as True or False values. All non-zero Numbers, non-empty
Strings/Lists/Tuples/Dictionaries  and all Functions are  True. Zero, empty
Strings/Lists/Tuples/Dictionaries are False. The name True is just another way of typing the
number one. Similarly, the name False is just another way of typing the number zero.

4.1. Lists and Tuples

The " "="" operator works a bit different on Lists than any other type — it appends to the existing
list rather than creating a new list. This can be seen in the following example:(((=)))

GNU General Public License Version 3 or later 23



24 The Snek Programming Language

= [1,2]

+= [3]

— V V V V
o 9 T 9
1
Q

1, 2, 3]

Compare this with Tuples, which (as they are immutable) cannot be appended to. In this example, b

retains the original Tuple value. a gets a new Tuple consisting of (3,) appended to the original
value.

T 9 T 9
+
I
—_—
w
N

~V —~V V V V
Q -~

24 © 2019 Keith Packard



Chapter 5. Operators 25

Chapter 5. Operators

Operators are things like + or —. They are part of the grammar of the language and serve to make
programs more readable than they would be if everything was a function call. Like Python, the
behavior of Snek operators often depends on the values they are operating on. Snek includes most
of the Python operators. Some numeric operations work on floating point values, others work on
integer values. Operators which work only on integer values convert floating point values to
integers, and then take the integer result and convert back to a floating point value.

value + value
The Plus operator performs addition on numbers or concatenation on strings, lists and tuples.

value — value
The Minus operator performs subtraction on numbers.

value * value

The Multiplication operator performs multiplication on numbers. If you multiply a string, 's', by a
number, 'n', you get 'n' copies of 's' concatenated together.

value / value
The Divide operator performs division on numbers.

value // value
The Div operator performs “integer division” on numbers, producing a result such that x // y
== floor(x / y) forall numbers x and y.

value % value
The Modulus operator gives the “remainder after division” of its arguments, such that x ==y *
(x // y) + x % y for all numbers x and y. If the left operand is a string, it performs
“interpolation” with either a single value or a list/tuple of values and is used to generate
formatted output. See the String Interpolation section for details.

value ** value
The Power operator performs exponentiation on numbers.

value & value
The Binary And operator performs bit-wise AND on integers.

value | value
The Binary Or operator performs bit-wise OR on integers.

value ~ value
The Binary Xor operator performs bit-wise XOR on integers.

value << value
The Left Shift operator does bit-wise left shift on integers.

GNU General Public License Version 3 or later 25



26 The Snek Programming Language

value >> value
The Right Shift operator does bit-wise left shift on integers.

not value

The Boolean Not operator yields True if its argument is False, False otherwise. That is, if the
operand is one of the True values, then Not returns False (which is 0), and if the operand is a
False value, then Not returns True (which is 1).

aand b

The Boolean And operator first evaluates a. If that is False, then its value is returned. Otherwise,
the value of b is returned.

aorb

The Boolean And operator first evaluates a. If that is True, then its value is returned. Otherwise,
the value of b is returned.

aisbh
True if a and b are the same object.

ais noth
True if a and b are not the same object.

ainb
True if a is contained in b. For strings, this means that a is a substring of b. If b is a tuple or list,

this means that a is one of the elements of b. If b is a dictionary, this means that a is one of the
keys of b.

anot inb
This is the same as not (a in b).

~ value
The Binary Not operator performs a bit-wise NOT operation on its integer operand.

—value

When used as a unary prefix operator, the Unary Minus operator performs negation on
numbers.

+ value

When used as a unary prefix operator, the Unary Plus operator does nothing at all to a
number.

value [ index ]
The Index operator selects the index-th member of strings, lists, tuples and dictionaries.

[ value [, value...] ]

The List operator creates a new List with the provided members. Note that a List of one value
does not have any comma after the value and is distinguished from the Index operator solely by
how it appears in the input.

26 © 2019 Keith Packard



Chapter 5. Operators 27

( value )

Parenthesis serve to control the evaluation order within expressions. Values inside the
parenthesis are computed before they are used as values for other operators.

(value , ) or (value[, value...])

The Tuple operator creates a new Tuple with the provided members. A Tuple of one value needs
a trailing comma so that it can be distinguished from an expression inside of parenthesis.

{ key : value[ , key : value ...] }

The Dictionary operator creates a new Dictionary with the provided key/value pairs. All of the
keys must be immutable.

5.1. Slices

The Slice operator, value [ base : bound : stride ], extracts a sequence of values from Strings, Lists
and Tuples. It creates a new object with the specified subset of values from the original. The new
object matches the type of the original.

base

The first element of value selected for the slice. If base is negative, then it counts from the end of
value instead the beginning.

bound
The first element of value beyond the range selected for the slice.

stride

The spacing between selected elements. Stride may be negative, in which case elements are
selected in reverse order, starting towards the end of value and working towards the beginning.
It is an error for stride to be zero.

All three values are optional. The default value for stride is one. If stride is positive, the default value
for base is 0 and the default for bound is the length of the array. If stride is negative, the default

value for base is the index of the last element in value (which is len(value) — 1) and the default
value for bound is —1. A slice with a single colon is taken as indicating base and bound. Here are
some examples:

# initialize a to a

# Tuple of characters

a=('a', 'b', 'c', 'd', 'e', 'f")

# With all default values, a[:] looks
# the same as a

al:1]

‘a', 'b', 'c', 'd', 'e', 'f")

> # Reverse the Tuple

> a[::-1]

—~ VvV V. V V VvV V

GNU General Public License Version 3 or later 27



28 The Snek Programming Language

('f', 'e', 'd', 'c', 'b', 'a")

> # Select the end of the Tuple starting
> # at index 3

> a[3:]

('d'", 'e', 'f")

> # Select the beginning of the Tuple,

> # ending before index 3

> a[:3]

(‘a', 'b', 'c")

5.2. String Interpolation

String interpolation in Snek can be confused with formatted printing in other languages. In Snek,
the print function prints any arguments as they are given, separating them with spaces on the
line. String interpolation produces a new String from a format specification String and a List or
Tuple of parameters: this new String can be used for printing or for anything else one might want a
String for.

If only a single value is needed, it need not be enclosed in a List or Tuple. Beware that if this single
value is itself a Tuple or List, then String interpolation will get the wrong answer.

Within the format specification String are conversion specifiers which indicate where to insert
values from the parameters. These are indicated with a % sign followed by a single character: this
character is the format indicator and specifies how to format the value. The first conversion
specifier uses the first element from the parameters, etc. The format indicator characters are:

0° o° % o°
X O H- Q

o°
x

Format a number as a whole number, discarding any fractional part and without any exponent.
%d and %i present the value in base 10. %0 uses base 8 (octal) and %x and %X use base 16
(hexadecimal), with %x using lower case letters (a-f) and %X using upper case letters (A-F).

o o° 0% % o° o°
aQ T -~ Mo

Format a number as floating point. The upper case variants use E for the exponent separator,
lower case uses e and are otherwise identical. %e always uses exponent notation, %f never uses
exponent notation. %g uses whichever notation makes the output smaller.

28 © 2019 Keith Packard



Chapter 5. Operators 29

°
“6C

Output a single character. If the parameter value is a number, it is converted to the character. If
the parameter is a string, the first character from the string is used.

°
“6S

Output a string. This does not insert quote marks or backslashes.

°
r

Generate a printable representation of any value, similar to how the value would be represented
in a Snek program.

If the parameter value doesn't match the format indicator requirements, or if any other character is
used as a format indicator, then %r will be used instead.

Here are some examples of String interpolation:

> print('hello %s' % 'world')
hello world

> print('hello %r' % 'world')
hello 'world'

> print('pi = %d' % 3.1415)
pi = 3

> print('pi = %f' % 3.1415)
pi = 3.141500

> print('pi = %e' % 3.1415)
pi = 3.141500e+00

> print('pi = %g' % 3.1415)
pi = 3.1415

> print('star is %c' % 42)
star is *

> print('%d %d %d' % (1, 2, 3))
123

And here are a couple of examples showing why a single value may need to be enclosed in a Tuple:

>a=(1,2,3)

> print('a is %r' % a)
ais 1

> print('a is %r' % (a,))
a is (1, 2, 3)

GNU General Public License Version 3 or later 29



30 The Snek Programming Language

In the first case, String interpolation is using the first element of a as the value instead of using all
of a.

30 © 2019 Keith Packard



Chapter 6. Expression and Assignment Statements 31

Chapter 6. Expression and Assignment
Statements

value

An Expression statement simply evaluates value. This can be useful if value has a side-effect, like
a function call that sets some global state. At the top-level, value is printed, otherwise it is
discarded.

location = value

The Assignment statement takes the value on the right operand and stores it in the location
indicated by the left operand. The left operand may be a variable, a list location or a dictionary
location.

location +=,—=,=, /=, //=, %=,*=, &=, |=, "=, <<=, >>=value
The Operation Assignment statements take the value of the left operand and the value of the
right operand and performs the operation indicated by the operator. Then it stores the result
back in the location indicated by the left operand. There are some subtleties about this which
are discussed in the Lists and Tuples section of the Data Types chapter.

GNU General Public License Version 3 or later 31



32 The Snek Programming Language

32 © 2019 Keith Packard



Chapter 7. Control Flow 33

Chapter 7. Control Flow

Snek has a subset of the Python control flow operations, including trailing else: blocks for loops.

7.1.1f
1T value : block [elif value : ...][else: block]

An If statement contains an initial i block, any number of elif blocks and then (optionally) an
else block in the following structure:

if if value
if statements
elif elif value
elif statements

else:
else statements

If if value is true, then if statements are executed. Otherwise, if elif value is true, then elif statements
are executed. If none of the if or elif values are true, then the else_statements are executed.

7.2.while

while value : block [else: block]

A While statements consists of a while block followed by an optional else block:

while while value
block

else:
block

While_value is evaluated and if it evaluates as True, the while block is executed. Then the system
evaluates while_value again, and if it evaluates as True again, the while block is again executed. This
continues until the while_value evaluates as False.

When the while_value evaluates as False, the else: block is executed. If a break statement is
executed as a part of the while statements, then the program immediately jumps past the else
statements. If a continue statement is executed as a part of the while statements, execution
jumps back to the evaluation of while_value. The else: portion (with else statements) is optional.

GNU General Public License Version 3 or later 33



34 The Snek Programming Language

7.3. for

for name in value : block [else: block]

For each value v in the list of values, the for statement assigns v to name and then executes a block
of statements. Volue can be specified in two different ways: as a List, Tuple, Dictionary or String
values, or as a range expression involving numbers:

for name in value:
for statements
else:
else statements

In this case, the value must be a List, Tuple, Dictionary or String. For Lists and Tuples, the values are
the elements of the object. For Strings, the values are strings made from each separate (ASCII)
character in the string. For Dictionaries, the values are the keys in the dictionary.

for name in range ( start, stop, step ):
for statements

else:
else statements

In this form, the for statement assigns a range of numeric values to name. Starting with start, and
going while not beyond stop, name gets step added at each iteration. Start is optional; if not present,
0 will be used. Step is also optional; if not present, 1 will be used.

for x in (1,2,3):
print(x)

print(c)

>

+

+

1

2

3

> for ¢ in 'hi':
+

+

h

i

>a={1:2, 3:4}

> for k in a:

+ print('key is %r value is %r' % (k, al[kl))

34 © 2019 Keith Packard



Chapter 7. Control Flow 35

+
key is 1 value is 2
key is 3 value is 4
> for i in range(3):

+ print(i)
+

0

1

2

> for i in range(2, 10, 2):
+ print(i)
+

2

4

6

8

If a break statement is executed as a part of the for statements, then the program immediately
jumps past the else statements. If a continue statement is executed as a part of the for
statements, execution jumps back to the assignment of the next value to name. In both forms, the
else: portion (with else statements) is optional.

7.4. return value

The Return statement causes the currently executing function immediately evaluate to value in the
enclosing context.

> def r():

+ return 1

+ print('hello')
+

> r()

1

In this case, the print statement did not execute because the return happened before it.

7.5. break

The Break statement causes the closest enclosing while or for statement to terminate. Any
optional else: clause associated with the while or for statement is skipped when the break is
executed.

GNU General Public License Version 3 or later 35



36 The Snek Programming Language

for x in (1,2):
if x ==
break
print(x)
else:
print('else')

=+ + + + + + Vv

> for x in (1,2):

+ if x ==

+ break

+ print(x)

+ else:

+ print('else')
+
1
2

else

In this case, the first example does not print else due to the break statement execution rules. The
second example prints else because the break statement is never executed.

7.6. continue

The continue statement causes the closest enclosing while or for statement to jump back to the
portion of the loop which evaluates the termination condition. In while statements, that is where

the while_value is evaluated. In for statements, that is where the next value in the sequence is
computed.

vowels = 0
other = 0
for a in 'hello, world':
if a in 'aeiou':
vowels += 1
continue
other += 1

V+ + + + + V VYV

vowels

36 © 2019 Keith Packard



Chapter 7. Control Flow 37

> other

The continue statement skips the execution of other += 1, otherwise other would be 12.

/.7. pass

The pass statement is a place-holder that does nothing and can be used any place a statement is
needed when no execution is desired.

> if 1 1= 2:

+ pass

+ else:

+ print('equal')
+

This example ends up doing nothing as the condition directs execution through the pass
statement.

GNU General Public License Version 3 or later 37



38 The Snek Programming Language

38 © 2019 Keith Packard



Chapter 8. Other Statements 39

Chapter 8. Other Statements

8.1. import name

The Import statement is ignored and is part of Snek so that Snek programs can be run using
Python.

> import curses

8.2. from name import *

The From statement is ignored and is part of Snek so that Snek programs can be run using
Python.

> from random import *

8.3.global name [, name ... ]

The Global statement marks the names as non-local; assignment to them will not cause a new
variable to be created.

g=20
def set_local(v):
g=yv

def set_global(v):
global g
g=yv

set_local(12)
g

set_global(12)
g

vV VoV VvV + + +V + + V V

=
N

\

Because set local does not include global g, the assignment to g creates a new local variable,

GNU General Public License Version 3 or later 39



40 The Snek Programming Language

which is then discarded when the function returns. set global does include the global g

statement, so the assignment to g references the global variable and the change is visible after that
function finishes.

8.4. del /ocation

The Del statement deletes either variables or elements within a List or Dictionary.

8.5. assert value

If value is False, the program will print AssertionError and then stop. Otherwise, the program
will continue executing. This is useful to add checks inside your program to help catch problems
earlier.

40 © 2019 Keith Packard



Chapter 9. Functions 41

Chapter 9. Functions

Functions in Snek (as in any language) provide a way to encapsulate a sequence of operations. They
can be used to help document what a program does, to shorten the overall length of a program or
to hide the details of an operation from other parts of the program.

Functions take a list of “positional” parameters, then a list of “named” parameters. Positional
parameters are all required, and are passed in the caller in the same order they appear in the
declaration. Named parameters are optional; they will be set to the provided default value if not
passed by the caller. They can appear in any order in the call. Each of these parameters is assigned
to a variable in a new scope; variables in this new scope will hide global variables and variables
from other functions with the same name. When the function returns, all variables in this new
scope are discarded.

Additional variables in this new scope are created when they are assigned to, unless they are
included in a global statement.

9.1. def

def fname ( pos1 [, posn...][, namen =defaultn ... ] ) : block

A def statement declares (or re-declares) a function. The positional and named parameters are all
visible as local variables while the function is executing.

Here's an example of a function with two parameters:

> def subtract(a,b):

+ return a - b
+

> subtract(3,2)

1

And here’s a function with one positional parameter and two named parameters:

> def step(value, times=1, plus=0):

+ return value * times + plus
+

> step(12)

12

> step(12, times=2)

24

> step(12, plus=1)

13

GNU General Public License Version 3 or later 41



42 The Snek Programming Language

> step(12, times=2, plus=1l)
25

42 © 2019 Keith Packard



Chapter 10. Standard Built-in Functions 43

Chapter 10. Standard Built-in Functions

Snek includes a small set of standard built-in functions, but it may be extended with a number of
system-dependent functions as well. This chapter describes the set of builtin functions which are
considered a “standard” part of the Snek language and are provided in all Snek implementations.

10.1. len(value)

Len returns the number of characters for a String or the number of elements in a Tuple, List or
Dictionary

> len('hello, world')

12

> len((1,2,3))

3

> len([1,2,3])

3

> len({ 1:2, 3:4, 5:6, 7:8 })
4

10.2. print( valuel , “value2, ..., end='\n")

Print writes all of its positional parameters to the console separated by spaces (' ') followed by the
end named parameter (default: "\n").

> print('hello world', end='.")
hello world.>

> print('hello’', 'world')

hello world

>

10.3. sys.stdout. flush()

Flush output to the console, in case there is buffering somewhere.

10.4. ord( string )

Converts the first character in a string to its ASCII value.

GNU General Public License Version 3 or later 43



44 The Snek Programming Language

> ord('A')
65

10.5. chr( number )

Converts an ASClI value to a one character string.

> chr(65)
|A|

10.6. abs ( number )

Computes the absolute value of its numeric argument. The absolute value of a number is the
number’s distance from O.

> abs(-2)
2

10.7. sqrt( number)

Compute the square root of its numeric argument.

> sqrt(2)
1.414214

44 © 2019 Keith Packard



Chapter 11. Common System Functions 45

Chapter 11. Common System Functions

These functions are system-dependent, but are generally available. If they are available, they will
work as described here.

11.1. exit ( value )

Terminate Snek and return value to the operating system. How that value is interpreted depends on
the operating system. On Posix-compatible systems, value should be a number which forms the exit
code for the Snek process with zero indicating success and non-zero indicating failure.

11.2. sleep( seconds )

Pause for the specified amount of time (which can include a fractional part).

> sleep(1)

>

11.3. monotonic()

Return the time (in seconds) since some unspecified reference point in the system history. This time
always increases, even if the system clock is adjusted (hence the name). Because Snek uses single-
precision floating point values for all numbers, the reference point will be close to the starting time
of the Snek system, so values may be quite small.

> monotonic()
6.859814

11.4. seed( seed )

Re-seeds the random number generator with seed. The random number generator will always
generate the same sequence of numbers if started with the same seed.

> seed(monotonic())
>

11.5. random()

Generates a random value greater than or equal to 0 and less than 1.

GNU General Public License Version 3 or later 45



46 The Snek Programming Language

> randrange(10)
3

11.6. randrange( max )

Generates a random integer between 0 and max-1 inclusive.

> randrange(10)
3

46 © 2019 Keith Packard



Chapter 12. Input Functions 47

Chapter 12. Input Functions

The Snek Input functions provide some operations commonly required when reading data provided
by the user via the serial port.

12.1. float ( value )

Converts value into a number. value can be either a string or a number.

> float('10.25"')
10.25

12.2. input ( prompt )

Prints optional prompt and then waits for the user to enter some text, terminated with a newline.
The text, without the trailing newline, is returned.

> input('--> ")
--> Hi there
'Hi there'

12.2.1. int( value )

Converts value into an integer, rounding towards zero. value can be either a string or a number.

> int('10.75"')
10

> int(-10.75)
-10

12.2.2. str( value )

Converts value (which may be any snek value) into a string. This is the same as '%s' % ( value,
)", but may be more clear in some contexts.

> str(10.75)
'10.75"'

> str((1,2,3))
(1, 2, 3)'

GNU General Public License Version 3 or later 47



48 The Snek Programming Language

> *str('hello world"')
"hello world'

48 © 2019 Keith Packard



Chapter 13. Math Functions 49

Chapter 13. Math Functions

The Snek math functions offer the same functions as the Python math package, although at single
precision instead of double precision. These functions are optional, but if any are provided, all are
provided and follow the definitions here.

13.1. Number-theoretic and representation functions

ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x.

copysign(x,y)
Return a number with the magnitude (absolute value) of x but the sign of y.

fabs(x)
Return the absolute value of x.

factorial(x)
Return the factorial of x.

floor(x)
Return the floor of x, the largest integer less than or equal to x.

fmod(x,y)
Return the modulus of x and y: x - trunc(x/y) *y.

frexp(x)

Returns the normalized fraction and exponent in a tuple (frac, exp). 0.5 < abs(frac) < 1, and x =
frac * pow(2,exp).

fsum(l)
Returns the sum of the numbers in |, which must be a list or tuple.

ged(x,y)
Return the greatest common divisor of x and y.

isclose(x,y,rel_val=1e-6,abs_val=0.0)

Returns a boolean indicating whether x and y are 'close' together. This is defined as abs(x-y) <
max(rel_tol * max(abs(a), abs(b)), abs_tol).

isfinite(x)
Returns True if x is finite else False.

isinf
Returns True if x is infinite else False.

GNU General Public License Version 3 or later 49



50 The Snek Programming Language

isnan
Returns True if x is not a number else False.

Idexp(x,y)
Returns x * pow(2,y).

modf(x)
Returns (x - trunc(x), trunc(x)).

remainder(x,y)
Returns the remainder of x and y: x - round(x/y) * y.

trunc
Returns the truncation of x, the integer closest to x which is no further from zero than x.

round(x)

Returns the integer nearest x, with values midway between two integers rounding away from
zero.

13.2. Power and logarithmic functions

exp(x)
Returns pow(e,x).

expm1(x)
Returns exp(x)-1.

exp2(x)
Returns pow(2,x).

log(x)
Returns the natural logarithm of x.

log1p(x)
Returns log(x+1).

log2(x)
Returns the log base 2 of x.

log10(x)
Returns the log base 10 of x.

pow(X,y)
Returns x raised to the y" power.

50 © 2019 Keith Packard



13.3. Trigonometric functions

acos(x)
Returns the arc cosine of x in the range of 0 < acos(x) < Tt.

asin(x)
Returns the arc sine of x in the range of -1/2 < asin(x) < /2.

atan(x)
Returns the arc tangent of x in the range of -1/2 < atan(x) < 11/2.

atan2(y,x)
Returns the arc tangent of y/x in the range of -t < atan2(y,x) < 1.

cos(x)
Returns the cosine of x.

hypot(x,y)
Returns sqrt(x*x + y*y).

sin(x)
Returns the sine of x.

tan(x)
Returns the tangent of x.

13.4. Angular conversion

degrees(x)
Returns x * 180/tt.

radians(x)
Returns x * 11/180.

13.5. Hyperbolic functions

acosh(x)
Returns the inverse hyperbolic cosine of x.

asinh(x)
Returns the inverse hyperbolic sine of x.

atanh(x)
Returns the inverse hyperbolic tangent of x.

GNU General Public License Version 3 or later

Chapter 13. Math Functions

51

51



52 The Snek Programming Language

cosh(x)
Returns the hyperbolic cosine of x: (exp(x) + exp(-x)) / 2.

sinh(x)
Returns the hyperbolic sine of x: (exp(x) - exp(-x)) / 2.

tanh(x)
Returns the hyperbolic tangent of x: sinh(x) / cosh(x).

13.6. Special functions

erf(x)
Returns the error function at x.

erfc(x)
Returns the complement of the error function at x. This is 1 - erf(x).

gamma(x)
Returns the gamma function at x.

Igamma(x)

Returns log(gamma(x)).

13.7. Mathematical constants
pi
The mathematical constant , to available precision.

The mathematical constant e, to available precision.

tau
The mathematical constant t, which is 21, to available precision.

inf
The floating point value which represents <.

nan
The floating point value which represents Not a Number.

52 © 2019 Keith Packard



Chapter 14. GPIO Functions 53

Chapter 14. GPIO Functions

On embedded devices, Snek has a range of functions designed to make manipulating the GPIO pins
convenient. Snek keeps track of two pins for output and one pin for input. The two output pins are
called Power and Direction. Each output function specifies which pins it operates on. All input and
output values range between 0 and 1. Digital pins use only 0 or 1, analog pins support the full range
of values from 0 to 1.

Input pins can be set so that they read as 0 or 1 when nothing is connected by using pulldown or
pullup. Using pullnone makes the pin “float” to provide accurate analog readings. Digital pins are
to pullup by default, Analog pins are set to pullnone.

Output pins are either on or off. A pin which is on has its value set to the current power for that
pin; changes to the current power for the pin are effective immediately. A pin which is off has its

output set to zero, but Snek remembers the setpower level and will restore the pin to that level
when it is turned on.

14.1. talkto( pin)

Set the current output pins. If pin is a number, this sets both the Power and Direction pins. If pinis a
List or Tuple, then the first element sets the Power pin and the second sets the Direction pin.

14.2. setpower ( power )

Sets the power level on the current Power pin to power. If the Power pin is currently on, then this is
effective immediately. Otherwise, Snek remembers the desired power level and will use it when the
pin is turned on. Values less than zero set the power to zero, values greater than one set the power
to one.

14.3. setleft()

Turns the current Direction pin on.

14.4. setright()

Turns the current Direction pin off.

14.5.on()

Turns the current Power pin on.

14.6. of f ()

Turns the current Power pin off.

GNU General Public License Version 3 or later 53



54 The Snek Programming Language

14.7. onfor( seconds )

Turns the current Power pin on, delays for seconds and then turns the current Power pin off.

14.8. read( pin )

Returns the value of pin. If this is an analog pin, then read returns a value from @ to 1 (inclusive).
If this a digital pin, then read returns either 0 or 1.

14.9. pullnone( pin)
Removes any pullup or pulldown settings for pin, leaving the value floating when nothing is

connected. Use this setting on analog pins to get continuous values rather than just 0 or 1. This is
the default setting for Analog pins.

14.10. pullup( pin)

Assigns a pullup setting for pin, so that the read will return 1 when nothing is connected. When in
this mode, analog pins will return only 0 or 1. This is the default setting for Digital pins.

14.11. pulldown( pin )

Assigns a pullup setting for pin, so that the read will return 0 when nothing is connected. When in
this mode, analog pins will return only 0 or 1. Note that some boards do not support this mode, in
which case this function will not be available.

14.12. stopall()

Turns all pins off.

14.13. neopixel( pixels )

Programs either a set of neopixel devices connected to the current Power pin (when Power and
Direction are the same) or a set of APA102 devices connected to the current Power (used for
APA102 Data) and Direction (used for APA102 Clock) pins (when Power and Direction are different).
pixels is either a list/tuple of three numbers, or a list/tuple, each element of which is a list/tuple of
three numbers ranging from 0 to 1 for the desired red, green and blue intensity of the target
neopixel.

> talkto(NEOPIXEL)
> neopixel((0, 0.5, 0))

This example programs a single NeoPixel device, setting it to half-intensity green.

54 © 2019 Keith Packard



Chapter 14. GPIO Functions 55

> talkto(NEOPIXEL)
> pixels = [(0.33, 0, 0), (0, 0.66, 0), (0, O, 1)]
> neopixel(pixels)

This example programs three NeoPixel devices, the first one is set to one third intensity red, the
second to two thirds intensity green and the last to full intensity blue. If there are additional
neopixel devices connected, they will not be modified. If there are fewer devices connected than the
data provided, the extra values will be ignored.

14.14. tone( frequency )

On devices with an audio output, this sets the output of that pin to a sine wave at frequency Hertz.
The amplitude is controlled by the power setting for the pin and whether the pin is turned on.

> talkto(A0)
> on()
> tone(tone.A)

14.15. tonefor( frequency , seconds)

Sets the audio tone to frequency, turns the current Power pin on, delays for seconds and then turns
the current Power pin off.

> talkto(AO)
> tonefor(tone.C, 1)

14.16. Musical note constants

These provide frequencies commonly used in music, starting with middle C:

Table 1. Musical note constants

Name Note Frequency

tone.C C 261.6255653
tone.Csharp C# 277.1826310
tone.Dflat Db 277.1826310
tone.D D 293.6647679
tone.Dsharp D# 311.1269837

GNU General Public License Version 3 or later 55



56 The Snek Programming Language

Name
tone.Eflat

tone.E
tone.F
tone.Fsharp
tone.Gflat
tone.G
tone.Gsharp
tone.Aflat
tone.A
tone.Asharp
tone.Bflat

tone.B

56

Note
Eb

F#

Gb

G#
Ab

At
Bb

Frequency
311.1269837

329.6275569
349.2282314
369.9944227
369.9944227
391.9954360
415.3046976
415.3046976
440.0000000
466.1637615
466.1637615
493.8833013

© 2019 Keith Packard



Chapter 15. EEPROM built-in functions 57

Chapter 15. EEPROM built-in functions

Snek on embedded devices may include persistent storage for source code. This code is read at
boot time, allowing boards with Snek loaded to run stand-alone. These functions are used by
Snekde to get and put programs to the device.

15.1. eeprom.write()

Reads characters from the console and writes them to eeprom until a D character is read.

15.2. eeprom.show()

Dumps the current contents of eeprom out to the console. If a parameter is passed to this function
then a 7B character is sent before the text, and a ~C is sent afterwards. Snekde uses this feature to
accurately capture the program text when the Get command is invoked.

15.3. eeprom.load()

Re-parses the current eeprom contents, just as Snek does at boot time.

15.4. eeprom.erase()

Erase the eeprom.

15.5. reset ()

Restart the Snek system, erasing all RAM contents. As part of the restart process, Snek will re-read
any source code stored in eeprom.

GNU General Public License Version 3 or later 57



58 The Snek Programming Language

58 © 2019 Keith Packard



Chapter 16. Temperature Conversion Function 59

Chapter 16. Temperature Conversion
Function

This function is included in devices that have a built-in temperature sensor.

16.1. temperature( sensorvalue )

The conversion function is pre-set with the parameters needed to convert from the temperature
sensor value to degrees Celsius.

GNU General Public License Version 3 or later 59



60 The Snek Programming Language

60 © 2019 Keith Packard



Chapter 17. Curses built-in functions 61

Chapter 17. Curses built-in functions

Curses provides a simple mechanism for displaying text on the console. The API is designed to be
reasonably compatible with the Python curses module, although it is much less flexible. Snek only
supports ANSI terminals, and doesn't have any idea what the dimensions of the console are. Not all
Snek implementations provide the curses functions.

17.1. curses.initscr()

Puts the console into “visual” mode. Disables echo. Makes stdscr.getch() stop waiting for
newline.

17.2. curses.endwin()

Resets the console back to “normal” mode. Enables echo. Makes stdscr.getch() wait for
newlines.

17.3. curses.noecho(), curses.echo(),
curses.cbreak(), curses.nocbhreak()

All four of these functions are no-ops and are part of the APl solely to make it more compatible with
Python curses.

17.4. stdscr.nodelay( nodelay )

If nodelay is True, then stdscr.getch() will return -1 if there is no character waiting. If nodelay is
False, the stdscr.getch () will block waiting for a character to return.

17.5. stdscr.erase()

Erase the screen.

17.6. stdscr.addstr( row , column , string)

Displays string at row, column. Row 0 is the top row of the screen. Column 0 is the left column. The
cursor is left at the end of the string.

17.7. stdscr.move( row , column )

Moves the cursor to row, column without displaying anything there.

GNU General Public License Version 3 or later 61



62 The Snek Programming Language

17.8. stdscr.refresh()

Flushes any pending screen updates.

17.9. stdscr.getch()

Reads a character from the console input. Returns a number indicating the character read, which
can be converted to a string using chr(c). If stdscr.nodelay(nodelay) was most recently

called with nodelay = True, then stdscr.getch() will immediately return -1 if no characters are
pending.

62 © 2019 Keith Packard



Chapter 18. Snek Development Environment 63

Chapter 18. Snek Development Environment

The Snek Development Environment, Snekde, is a Python program which runs on Linux, Mac OS X
and Windows to work with small devices running Snek, such as the Duemilanove and Metro MO
Express boards.

18.1. Starting Snekde

On Windows and Linux, launch snekde from your application menu. On Mac OS X, Snekde is
installed along with the other Snek files in the Snek folder inside your personal Applications folder,
which is inside your Home folder. Double click on the Snekde icon to launch.

Snekde runs inside a console or terminal window and doesn't use the mouse at all, instead it is
controlled entirely using keyboard commands.

Snekde splits the window into two panes. The upper pane is the "editor pane” that holds your Snek
program. The lower pane is the “console pane” and handles communications with the Snek device.

18.2. Basic Navigation

Across the top of the window you'll see a list of commands which are bound to function keys. Those
are there to remind you how to control Snekde.

If your function keys don't work, you can use the Esc key along with a number key instead. Press
and release the Esc key, then press and release a number key. For instance, to invoke the F1
command, press and release Esc, then press and release '1".

Between the two panes is a separator line. At the end of that line is the name of the currently

connected Snek device, such as /dev/ttyUSBO on Linux or COM12 on Windows. If there isn't a
device connected, it will say “<no device>".

The cursor shows which pane you are currently working with. To switch between the editor and
console panes, use the F7 key. If you don't have one of these, or if it doesn't work, you can also use

Esc-7 or Ctrl-o (press and hold the Ctrl key, press the o key and then release both).

You can move around the current pane with the arrow, home, end and page-up/page-down keys.
Cut/paste/copy use Ctrl-x, Ctrl-v and Ctrl-c or Esc-x, Esc-v and Esc-c respectively. To mark a section
of text for a Cut or Paste command, press Esc-space or Ctrl-space then use regular movement
commands. The selected region of text will be highlighted.

18.3. Connecting to a Device

To connect to a device running Snek, press the F1 key (usually right next to the ESC key on your
keyboard). That will display a dialog box in the middle of the screen listing all of the devices which
might be running Snek (if you've got a serial modem or other similar device, that will also be listed
here). Select the target device and press the ENTER key.

Don't expect anything to happen in the lower pane just yet; you'll have to get the attention of the

GNU General Public License Version 3 or later 63



64 The Snek Programming Language

device first.

Switch to the Console pane (F7) and press Ctrl-c to interrupt any currently running Snek program.
You should see the Snek prompt (“>") appear in the pane.

18.4. Getting and Putting Programs to a Device

The Snek device holds one program in non-volatile memory. When it starts up, it will run that
program automatically. This lets you set up the device so that it will perform some action when it is
turned on without needing to communicate with it first.

The Get command fetches the current program from the connected device and puts it into the
Editor pane. The Put command writes the Editor pane contents into non-volatile memory in the
target device and then restarts the target device to have it reload the program. Both of these
commands will interrupt any running Snek program before doing any work.

18.5. Loading and Saving Programs to the Host

You can also save and load programs to the host file system. Both of these commands prompt for a
filename using a file dialog. At the top of the dialog is the filename to use. The rest of the dialog
contains directories and files within the same directory as the filename. Directories are enclosed in

[].

Using the arrow keys replaces the filename with the highlighted name. You can also edit the
filename using backspace and entering a new name.

Select a filename by pressing enter. If the name is a directory, then the contents of that directory
will replace the list of directories and files in the dialog. If the name is a file, then that will be used
for the load or save operation.

To quit from the dialog and skip loading or saving a file, press Escape.

64 © 2019 Keith Packard



Appendix A: Snek on snekboard 65

Appendix A: Snek on snekboard

Snek for the snekboard includes the Common System, Math, Input, GPIO (including the neopixel
function) and EEPROM functions. Snek for the snekboard provides pre-defined variables for the
eight analog I/0 pins as well as the four 9V motor controllers:

A1-A8

Analog input and output pins. When used as output pins, you can use setpower to control the
drive power. When used as input pins, Snek will return a value from 0-1 indicating the ratio of
the pin voltage to 3.3V. By default, when used as input pins, Snek does not apply either a pull-up
or pull-down resistor to the pin so that a disconnected pin will read an indeterminate value.

Change this using pullnone, pullup or pulldown functions.

M1-M4
Bi-directional 9V DC motor control, 2.5A max current. These are tuples with two values each.
M1[O], M2[0O], M3[0] and M4[0O] are the power pins. M1[1], M2[1], M3[1] and M4[1] are the
direction pins. Note that there’s a bit of firmware behind these pins that keeps the outputs from
changing power too rapidly.

NEOPIXEL

The two APA102 devices on the board, which can be driven using the neopixel function.
Snekboard includes a boot loader which presents as a USB mass storage device with a FAT file
system. You can get the board into this mode by connecting the board to your computer over USB
and then pressing the blue reset button twice in quick succession.

Then, find the snek-board-1.13.uf2 file included in the Snek package for your machine and
copy it to the snekboard file system.

GNU General Public License Version 3 or later 65



66 The Snek Programming Language

Appendix B: Snek on Arduino Duemilanove,
LilyPad, Nano and Uno

These boards are all based on the original Arduino ATMega 328 processor. There are two versions
of Snek for these boards: the regular version and a “big” version. The regular version co-exists with
the Optiboot bootloader which makes re-flashing with new versions of Snek convenient. The big
version overwrites the boot loader to provide additional functionality.

Snek for these boards include the Common System, EEPROM, and GPIO functions. The “big”

versions add the Input functions. They do not include the Math functions, nor the pulldown
function. Snek for these boards provides pre-defined variables for all of the GPIO pins:

Snek for the LilyPad adds the 'tone' and 'tonefor’ builtins, which send an audio tone to pin D5. To
make space for this, support for Dictionaries was removed.

DO-D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone or pullup
functions.

AO - A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 5V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an
indeterminate value. Change this using pullnone or pullup functions.

B.1. Installing Optiboot on ATMega 328 boards

Snek nearly fills the ATMega 328P flash, leaving space only for the smaller optiboot loader. This
loader is not usually installed on the Duemilanove or Nano, so you'll need to install it by hand using
a programming puck, such as the USBTiny device.

Use the Arduino IDE to install the Optiboot boot loader following instructions found on the
Optiboot web site [https://github.com/Optiboot/optiboot].

B.2. Installing Snek on ATMega 328 boards

To install the regular version, once your board is ready to install snek, you can use avrdude to do
that with Optiboot. On Linux, you can use snek-duemilanove-install (for Duemilanove and Nano),
snek-uno-install (for Uno), or snek-lilypad-install (for LilyPad).

$ snek-duemilanove-install

or

66 © 2019 Keith Packard


https://github.com/Optiboot/optiboot

Appendix B: Snek on Arduino Duemilanove, LilyPad, Nano and Uno 67

$ snek-lilypad-install

or

$ snek-uno-install

On other hosts, you'll need to run 'avrdude' manually. For Duemilanove or Nano boards:

$ avrdude -pm328p -carduino -PCOM1 -b115200 -D -U flash:w:snek-
duemilanove-1.13.hex:1i

For Uno boards:

$ avrdude -pm328p -carduino -PCOM1 -b115200 -D -U flash:w:snek-uno-
1.13.hex:1i

For LilyPad boards:

$ avrdude -pm328p -carduino -PCOM1 -b57600 -D -U flash:w:snek-lilypad-
1.13.hex:1i

Replace '"COM1" with the name of the serial port on your computer.
To install the “big” version, you'll need to use a programming device, such as a usbtiny from

Adafruit. Once connected, on Linux you can use snek-duemilanove-big-install (for Duemilanove or
Nano), snek-lilypad-big-install (for LilyPad), or snek-uno-big-install (for Uno):

$ snek-duemilanove-big-install

or

$ snek-lilypad-install-big

or

GNU General Public License Version 3 or later 67



68 The Snek Programming Language

$ snek-uno-big-install

On other hosts, you'll need to run 'avrdude' manually:

$ avrdude -V -c usbtiny -p m328p -u -U -U hfuse:w:0xdl:m
avrdude -c usbtiny -p m328p -U flash:w:snek-duemilanove-big-
1.13.hex:1i

“+r

or

$ avrdude -V -c usbtiny -p m328p -u -U -U hfuse:w:0xdl:m
$ avrdude -c usbtiny -p m328p -U flash:w:snek-lilypad-big-1.13.hex:1i

or

$ avrdude -V -c usbtiny -p m328p -u -U -U hfuse:w:0xdl:m
$ avrdude -c usbtiny -p m328p -U flash:w:snek-uno-big-1.13.hex:1i

68 © 2019 Keith Packard



Appendix C: Snek on Adafruit ItsyBitsy and the Crowd Supply pduino 69

Appendix C: Snek on Adafruit ItsyBitsy and
the Crowd Supply pduino

Snek for the ItsyBitsy and pduino includes the Common System, GPIO (without the neopixel
function), and EEPROM functions. Snek for the itsybitsy provides pre-defined variables for all of the
the GPIO pins:

DO-D13
Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor
to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or
pulldown functions.

AO - A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to either 3.3V (on the 3v device) or 5V (on the 5V device). By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using

pullnone, pullup or pulldown functions.

MISO, MOSI, SCK

Additional digital input and output pins. These work just like DO-D13. These are not present on
the pduino board.

Snek fills the ATMega 32u4 flash completely leaving no space for the usual USB boot loader, so
installing Snek requires a programming puck, such as the USBTiny device.

On Linux, the Snek installation includes shell scripts, snek-itsybitsy-install and snek-uduino-install
which install the binary using ‘'avrdude'. Read the snek-itsybitsy-install or snek-uduino-install
manual (also included in the installation) for more information.

The pduino programming wires are only available while the device is still connected to the carrier
board. Normally the pduino has been broken off of that during manufacturing.

On other hosts, you'll need to install 'avrdude’. Once you've done that, there are two steps to
getting Snek installed on the device.

1. Set the 'fuses' on the target device. This sets the start address back to the beginning of memory
instead of the boot loader, and then has the device leave the eeprom contents alone when re-
flashing. That means you won't lose your Snek program when updating the firmware.

$ avrdude -F -V -c usbtiny -p m32u4 -U:m -U hfuse:w:0x99:m

2. Install the Snek binary. Pick the version for your board as that also sets the right clock speed.
For 5v boards, install the 5v binary:

GNU General Public License Version 3 or later 69



70 The Snek Programming Language

$ avrdude -F -V -c usbtiny -p m32u4 -U flash:w:snek-itsybitsy5v-
1.13.hex

for 3v boards, use the 3v binary.

$ avrdude -F -V -c usbtiny -p m32u4 -U flash:w:snek-itsybitsy3v-
1.13.hex

for pduino boards, use the pduino binary.

$ avrdude -F -V -c usbtiny -p m32u4 -U flash:w:snek-uduino-1.13.hex

70 © 2019 Keith Packard



Appendix D: Snek on Adafruit ItsyBitsy MO 71

Appendix D: Snek on Adafruit ItsyBitsy MO

Snek for the Adafruit ItsyBitsy includes the Common System, Input, Math, GPIO (including the

neopixel function), and EEPROM functions. Snek for the itsybitsy mO provides pre-defined
variables for all of the the GPIO pins:

DO-D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor
to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or

pulldown functions. D5 on the ItsyBitsy MO is hooked to a 3.3V to 5V converter so that it can
drive 5V devices. This means it cannot be used as an input pin.

AO

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using
pullnone, pullup or pulldown functions.

A1-A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an
indeterminate value. Change this using pullnone, pullup or pulldown functions.

SDA, SCL, MISO, MOSI, SCK
Additional digital input and output pins. These work just like DO-D13.

NEOPIXEL
The APA102 device on the board, which can be driven using the neopixel function.

The Adafruit ItsyBitsy MO board includes a boot loader which presents as a USB mass storage
device with a FAT file system. You can get the board into this mode by connecting the board to your
computer over USB and then pressing the reset button twice in succession. In boot loader mode,
the red LED on D13 will pulse rapidly for a few seconds, then more slowly. At that point, the APA102
device will turn green.

Once the ItsyBitsy MO is in boot loader mode and has been mounted, find the snek-

itsybitsym0-1.13.uf2 file included in the Snek package for your machine and copy it to the
ItsyBitsy MO file system.

GNU General Public License Version 3 or later 71



72 The Snek Programming Language

Appendix E: Snek on Arduino Mega

Snek for the Mega includes the Common System, EEPROM, Input, GPIO (not including the

pulldown function) and math functions. Snek for the Mega provides pre-defined variables for all of
the GPIO pins:

D0-D53

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone or pullup
functions.

AO0-A15

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 5V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone or pullup functions.

Snek fits comfortably in the ATmega2560 flash, leaving plenty of space for the serial boot loader, so
re-installing Snek can be done over USB. However, the default firmware loaded on the ATMega16u2
that acts as USB to serial converter doesn't do any XON/XOFF flow control and so that should be
replaced before installing Snek as Snekde will not get or put source code successfully without it.

On Linux, the Snek installation includes a shell script, snek-mega-install, to install the binary using
‘avrdude'’. Read the snek-mega-install manual (also included in the installation) for more
information.

On other hosts, you'll need to install 'avrdude'. Once you've done that, you can use it to get Snek
installed on the device. Because the EEPROM fuse bit can't be set this way, when you do this any
Snek program stored on the device will be erased. Find out what port the Mega is connected to, use
that as the value for <port> and then run 'avrdude' as follows:

$ avrdude -patmega2560 -cwiring -P<port> -b115200 -D -U flash:w:snek-
mega-1.13.hex:1i

72 © 2019 Keith Packard



Appendix F: Snek on Arduino Nano Every 73

Appendix F: Snek on Arduino Nano Every

Snek for the Nano Every includes the Common System, EEPROM, Input, Tone, GPIO (not including
the pulldown function) and math functions (except for hyperbolic trig, error, and gamma
functions). Snek for the Nano Every provides pre-defined variables for all of the GPIO pins:

D0-D13, LED
Digital input and output pins. LED is another name for D13. By default, when used as input pins,
Snek applies a pull-up resistor to the pin so that a disconnected pin will read as 1. Change this
using pullnone or pullup functions.

AO-A7

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 5V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an
indeterminate value. Change this using pullnone or pullup functions.

Snek fits comfortably in the ATmega4809 flash, which it shares with the snek application. The Nano
Every doesn't need a boot loader, so re-installing Snek can be done over USB.

On Linux, the Snek installation includes a shell script, snek-nano-every-install, to install the binary
using 'avrdude'. Read the snek-nano-every-install manual (also included in the installation) for more
information.

On other hosts, you'll need to install 'avrdude'. Once you've done that, you can use it to get Snek
installed on the device. Because the Snek application is stored in flash along with the Snek
interpreter, when you do this any Snek program stored on the device will be erased. Find out what

port the Nano Every is connected to, use that as the value for <port> and then run 'avrdude' as
follows:

$ avrdude -patmegad4809 -cjtag2updi -P<port> -b115200 -Ufuse2:w:0x02:m
-Ufuse5:w:0xC9:m -Ufuse8:w:0xb0O:m -Ufuse7:w:0xb0:m -U flash:w:snek-
mega-1.13.hex:1i

GNU General Public License Version 3 or later 73



74 The Snek Programming Language

Appendix G: Snek on Metro MO Express

Snek for the Metro MO Express includes the Common System, Input, Math, GPIO (including the
neopixel function), and EEPROM functions. Snek for the metro mO provides pre-defined variables
for all of the GPIO pins:

DO-D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor
to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or
pulldown functions.

AO

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using
pullnone, pullup or pulldown functions.

A1-A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

SDA, SCL
Additional Digital input and output pins. These work just like DO-D13.

NEOPIXEL

The NeoPixel device installed on the board.
The Adafruit Metro MO Express board includes a boot loader which presents as a USB mass storage
device with a FAT file system. You can get the board into this mode by connecting the board to your
computer over USB and then pressing the reset button twice in quick succession.

Then, find the snek-metrom0-1.13.uf2 file included in the Snek package for your machine and
copy it to the Metro MO file system.

74 © 2019 Keith Packard



Appendix H: Snek on Feather MO Express 75

Appendix H: Snek on Feather MO Express

Snek for the Feather MO Express includes the Common System, Input, Math, GPIO (including the

neopixel function), and EEPROM functions. Snek for the feather provides pre-defined variables for
all of the GPIO pins:

DO-D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor
to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or
pulldown functions.

AO

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using
pullnone, pullup or pulldown functions.

A1-A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an
indeterminate value. Change this using pullnone, pullup or pulldown functions.

SDA, SCL, SCK, MOSI, MISO
Additional Digital input and output pins. These work just like DO-D13.

NEOPIXEL
The NeoPixel device installed on the board, which is connected to D8.

RX, TX

RXis DO, TX is D1.
The Adafruit Feather MO Express board includes a boot loader which presents as a USB mass
storage device with a FAT file system. You can get the board into this mode by connecting the board
to your computer over USB and then pressing the reset button twice in quick succession.

Then, find the snek-feather-1.13.uf2 file included in the Snek package for your machine and
copy it to the Feather MO file system.

GNU General Public License Version 3 or later 75



76 The Snek Programming Language

Appendix I: Snek on Adafruit Crickit

Snek for the Crickit includes the Common System, Input, Math, GPIO (including the neopixel
function), and EEPROM functions. Snek for the Crickit provides names for all of the GPIO pins:

DRIVE1 - DRIVE4
High current “Darlington” 500mA drive outputs.

MOTOR1, MOTOR2

Bi-directional DC motor control, 1A max current. These are tuples with two values each.
MOTOR1[O] and MOTOR2[0O] are the power pins. MOTOR1[1] and MOTOR2[1] are the direction
pins. Note that there's a bit of firmware behind these pins as the TI DRV8833 chip has a slightly
funky control mechanism.

SERVO1 - SERVO4
Digital pins with PWM output

CAP1 - CAP4
Digital pins labeled “Capacitive Touch” on the Crickit board.

SIGNAL1

The first Signal pin. This provides analog input and output. This pin has a digital-to-analog
converter (DACQ).

SIGNAL2 - SIGNALS

The Signal pins. These provide digital output and analog input. SIGNALS - SIGNALS also provide
PWM output

NEOPIXEL
The single NeoPixel device installed on the board.

NEOPIXEL1

The external NeoPixel connector.
The Adafruit Crickit board includes a boot loader which presents as a USB mass storage device with
a FAT file system. You can get the board into this mode by connecting the board to your computer
over USB and then pressing the reset button twice in quick succession.

Then, find the snek-crickit-1.13.uf2 file included in the Snek package for your machine and
copy it to the Crickit file system.

76 © 2019 Keith Packard



Appendix J: Snek on Adafruit Circuit Playground Express 77

Appendix J: Snek on Adafruit Circuit
Playground Express

Snek for the Circuit Playground Express includes the Common System, Input, Math, GPIO (including
the neopixel, tone and tonefor functions), Temperature and EEPROM functions. Snek for the
Playground provides names for all of the external connections as well as the built-in devices:

AO

Analog input and output connection. This pin has a digital-to-analog converter (DAC) and can be
used with the tone and tonefor functions. When used as inputs, Snek will return a value from
0-1 indicating the ratio of the voltage to 3.3V. By default, when used as inputs, Snek does not
apply either a pull-up or pull-down resistor so that a disconnected input will read an
indeterminate value. Change this using pullnone, pullup or pulldown functions.

A1-A7

Analog input and Digital output connections. When used as inputs, Snek will return a value from
0-1 indicating the ratio of the voltage to 3.3V. By default, when used as inputs, Snek does not
apply either a pull-up or pull-down resistor so that a disconnected input will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

A8 or LIGHT

Internal ambient light sensor. Returns a value indicating how much light is shining on the
sensor.

A9 or TEMP

Internal temperature sensor. Use the builtin temperature function to convert values read from
this pin to degrees Celsius.

D4 or BUTTONA
Connected to the momentary button labeled 'A'. 0 if not pressed, 1 if pressed.

D5 or BUTTONB
Connected to the momentary button labeled 'B'. 0 if not pressed, 1 if pressed.

D7 or SWITCH

Connected to the slide switch. O if slid right (towards the microphone), 1 if slid left (towards the
speaker).

D13 or LED
The red LED near the USB connector.

D8 or NEOPIXEL
The string of 10 NeoPixel devices on the board.

The Adafruit Circuit Playground Express board includes a boot loader which presents as a USB

mass storage device with a FAT file system. You can get the board into this mode by connecting the
board to your computer over USB, sliding the switch to the right (towards the microphone) and

GNU General Public License Version 3 or later 77



78 The Snek Programming Language

then pressing the reset button twice in quick succession.

Then, find the snek-playground-1.13.uf2 file included in the Snek package for your machine
and copy it to the Circuit Playground Express file system.

78 © 2019 Keith Packard



Appendix K: Snek on Arduino SA Nano 33 loT 79

Appendix K: Snek on Arduino SA Nano 33 loT

Snek for the Nano 33 IoT includes the Common System, Input, Math, GPIO, and EEPROM functions.
Snek for the Nano 33 IoT provides names for all of the GPIO pins:

DO -D12
Digital outputs By default, when used as input pins, Snek does not apply either a pull-up or pull-
down resistor to the pin so that a disconnected pin will read an indeterminate value. Change this
using pullnone, pullup or pulldown functions.

D13 or LED
The yellow LED near the USB connector.

AO

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using
pullnone, pullup or pulldown functions.

A1-A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an
indeterminate value. Change this using pullnone, pullup or pulldown functions.

The Arduino SA Nano 33 |oT board includes a boot loader which works with the Arduino IDE. Snek
includes a replacement boot loader which presents as a USB mass storage device with a FAT file
system. To install this boot loader, start the Arduino IDE, find the update-bootloader-nano33iot.ino
project included in the Snek package for your machine and load it into the Arduino IDE. Then
compile and download that to the Nano 33 loT board. That will replace the boot loader and restart
the board, at which point it should present a file system. For future updates, you can get the board
back into this mode by connecting the board to your computer over USB and then pressing the
reset button twice in quick succession.

Once the board is showing a file system on your computer, find the snek-nano33iot-1.13.uf2
file included in the Snek package for your machine and copy it to the file system.

GNU General Public License Version 3 or later 79



80 The Snek Programming Language

Appendix L: Snek on Lego EV3

Snek for Lego EV3 runs under ev3dev [https://www.ev3dev.org/].
The following sensors are supported:
e Lego EV3 Touch Sensor [https://education.lego.com/en-us/products/ev3-touch-sensor/45507],
True and False are reported when read ().

e Lego EV3 Color Sensor [https://education.lego.com/en-us/products/ev3-color-sensor/45506], named "light
sensor" in Snek,

The sensor can be configured by calling light reflected, light ambient, light color
and light rgb functions.

o In light reflected mode the sensor returns intensity of reflected LED light, range 0..1.
This is the default mode.
o In light ambient mode the sensor returns intensity of ambient light, range 0..1.

o In light color mode the sensor returns a detected color name, one of 'black’, 'blue’,
‘green', 'yellow', 'white', "brown', or None if no object is detected.

o In light rgb mode the sensor returns RGB color tuple of 3 elements, each component in
range 0..1.

e Lego EV3 Ultrasonic Sensor [https://education.lego.com/en-us/products/ev3-ultrasonic-sensor/45504],
named "distance sensor" in Snek.

A distance to the object in front of sensor in centimeters is returned, or Inf if no object is
detected.

Sensor ports are named 1-4, matching the markings on EV3 body.
Sensors are detected automatically, so they can be plugged/unplugged while Snek is running.
The following motors are supported:

e Lego EV3 Large Servo Motor [https://www.lego.com/en-us/product/ev3-large-servo-motor-45502]

e Lego EV3 Medium Servo Motor [https://www.lego.com/en-us/product/ev3-medium-servo-motor-45503]

Servo motors have two-way communication with the host, so current speed (either from
application of power or from manual rotation) and current position of the motor can be queried:

e read reads the current speed of the motor (-3 to 3 rotations per second),

e position reads the current position of the motor (rotations from reset).
Servo motors remember the initial position after reset, so the position can become arbitrarily big.

Current motor to control is selected by using talkto with port names "A' to 'D".

80 © 2019 Keith Packard


https://www.ev3dev.org/
https://education.lego.com/en-us/products/ev3-touch-sensor/45507
https://education.lego.com/en-us/products/ev3-color-sensor/45506
https://education.lego.com/en-us/products/ev3-ultrasonic-sensor/45504
https://www.lego.com/en-us/product/ev3-large-servo-motor-45502
https://www.lego.com/en-us/product/ev3-medium-servo-motor-45503

Appendix L: Snek on Lego EV3 81

The following operations are available on the selected motor:

setpower sets the motor speed, from -3 to 3 rotations per second.

setleft makes the motor rotate counterclockwise when positive speed is requested.
setright makes the motor rotate clockwise when positive speed is requested.

on starts the motor

off stops the motor

onfor starts the motor for specified amount of seconds. This function returns immediately.

setposition starts the motor it running until it reaches the given position (measured in
rotations). This function returns immediately.

ramp up sets the ramp-up time. The argument specifies duration in seconds from 0 to
maximum speed. If a speed smaller than maximum is requested, ramp-up time is shortened
proportionally.

ramp down sets the ramp-down time in the same manner.

Servo motors have several modes for stopping, select them using the following functions:

coast. Once the desired position is reached, remove the power. The motor coasts to stop. This
is the default mode.

brake. Once the desired position is reached, remove the power and apply passive load on the
motor. Motor stops quicker than when coasting.

hold. Once the desired position is reached, actively hold the position by turning the motor to
the desired position.

To run Snek on EV3:

boot ev3dev [https://www.ev3dev.org/docs/getting-started/],
connect it to the host [https://www.ev3dev.org/docs/tutorials/],
Copy snek-ev3-1.13 to EV3via scp.

SSH to EV3 [https://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/] and run . /snek-ev3-
1.13.

GNU General Public License Version 3 or later 81


https://www.ev3dev.org/docs/getting-started/
https://www.ev3dev.org/docs/tutorials/
https://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/

82 The Snek Programming Language

82 © 2019 Keith Packard



Index

@

%, 25, 28
%=, 31
&, 25
&=, 31
() 27
(value, ...), 27
* 25
*% 25
*%= 31
*= 31
+, 25-26
+=, 31

-, 25

/, 25
/1,25
/1=, 31
/=, 31
<<, 25
<<=, 31
=, 31
>> 26
>>= 31
[1 26
[value, ...], 26
A 25
A= 31

|, 25

|=, 31

~, 26

-, 26
-=, 31
©, 52

A

abs, 44

acos, 51

acosh, 51

and, 26

Arduino, 66, 74-75
Arduino Mega, 72
Arduino Nano Every, 73
asin, 51

asinh, 51
assignment, 31
atan, 51

atan2, 51

atanh, 51

B

Boolean, 23
break, 33, 35

C

ceil, 49

chr, 44

continue, 36
copysign, 49

cos, 51

cosh, 52

Crickit, 76

curses, 61
curses.cbreak, 61
curses.echo, 61
curses.endwin, 61
curses.initscr, 61
curses.nocbreak, 61
curses.noecho, 61

D

def, 6, 41

degrees, 51

del, 40

Dictionary, 11, 22-23
Duemilanove, 66

E

e, 52

eeprom, 57
eeprom.erase, 57
eeprom.load, 57
eeprom.show, 57
eeprom.write, 57
elif, 33

else, 33-34

erf, 52

erfc, 52

exit, 45

exp, 50

exp2, 50

expm1, 50

F
fabs, 49

GNU General Public License Version 3 or later

Index 83

83



84 The Snek Programming Language

factorial, 49

Feather MO Express, 75

floor, 49
fmod, 49
for, 8, 10, 34
frexp, 49
from, 39
fsum, 49
Function, 23

G

gamma, 52
gcd, 49
global, 39
GPIO, 14, 53

H
hypot, 51

if, 13, 33
import, 39
in, 8,10, 26
inf, 52

is, 26

is not, 26
isclose, 49
isfinite, 49
isinf, 49
isnan, 50
ItsyBitsy, 69
ItsyBitsy MO, 71

K
Keyword, 20

L

ldexp, 50
len, 43
lgamma, 52
LilyPad, 66
List, 9, 23
log, 50
log10, 50
log1p, 50
log2, 50

M
Metro MO Express, 74

84

modf, 50
monotonic, 45

N

Name, 19

NaN, 52

nan, 52

Nano, 66

Nano 33 loT, 79
neopixel, 54
not, 26

notin, 26
Number, 19, 23

o)

off, 15, 53
on, 14, 53
onfor, 15, 54
or, 26

ord, 43

P

pass, 37

pi, 52
Playground, 78
pow, 50

print, 6, 43

R

radians, 51
random, 45
randrange, 46
range, 8

read, 15, 54
remainder, 50
reset, 57
return, 7, 35
round, 50

S

seed, 45

setleft, 15, 53
setpower, 15, 53
setright, 15, 53
sin, 51

sinh, 52

sleep, 14, 45
slice, 27
snekboard, 65
snekde, 63

© 2019 Keith Packard



sqrt, 44
stdscr.addstr, 61
stdscr.erase, 61
stdscr.getch, 62
stdscr.move, 61
stdscr.nodelay, 61
stdscr.refresh, 62
stopall, 54

String, 21, 23
string interpolation, 28
sys.stdout.flush, 43

T

talkto, 14, 53
tan, 51

tanh, 52

tau, 52

tone, 55
tonefor, 55
trunc, 50
Tuple, 9, 23

U
Uno, 66

w
while, 12, 33

M
pduino, 69

-
T, 52

-
T, 52

GNU General Public License Version 3 or later

Index 85

85



	The Snek Programming Language: A Python-inspired Embedded Computing Language
	Table of Contents
	License
	Acknowledgments
	Chapter 1. History and Motivations
	1.1. Arduino in the Lego Program
	1.2. A New Language
	1.3. Introducing Snek

	Chapter 2. A Gentle Snek Tutorial
	2.1. Hello World
	2.2. Variables
	2.3. Functions
	2.4. Simple Arithmetic
	2.5. Loops, Ranges and Printing Two Values
	2.6. Lists and Tuples
	2.7. Dictionaries
	2.8. While
	2.9. If
	2.10. Controlling GPIOs

	Snek Reference Manual
	Chapter 3. Lexical Structure
	3.1. Numbers
	3.2. Names
	3.3. Keywords
	3.4. Punctuation
	3.5. White Space (Spaces and Newlines)
	3.6. String Constants
	3.7. List and Tuple Constants
	3.8. Dictionary Constants

	Chapter 4. Data Types
	4.1. Lists and Tuples

	Chapter 5. Operators
	5.1. Slices
	5.2. String Interpolation

	Chapter 6. Expression and Assignment Statements
	Chapter 7. Control Flow
	7.1. if
	7.2. while
	7.3. for
	7.4. return value
	7.5. break
	7.6. continue
	7.7. pass

	Chapter 8. Other Statements
	8.1. import name
	8.2. from name import *
	8.3. global name [ , name … ]
	8.4. del location
	8.5. assert value

	Chapter 9. Functions
	9.1. def

	Chapter 10. Standard Built-in Functions
	10.1. len(value)
	10.2. print( value1 , `value2, …, end='\n')
	10.3. sys.stdout.flush()
	10.4. ord( string )
	10.5. chr( number )
	10.6. abs( number )
	10.7. sqrt( number )

	Chapter 11. Common System Functions
	11.1. exit( value )
	11.2. sleep( seconds )
	11.3. monotonic()
	11.4. seed( seed )
	11.5. random()
	11.6. randrange( max )

	Chapter 12. Input Functions
	12.1. float( value )
	12.2. input( prompt )

	Chapter 13. Math Functions
	13.1. Number-theoretic and representation functions
	13.2. Power and logarithmic functions
	13.3. Trigonometric functions
	13.4. Angular conversion
	13.5. Hyperbolic functions
	13.6. Special functions
	13.7. Mathematical constants

	Chapter 14. GPIO Functions
	14.1. talkto( pin )
	14.2. setpower( power )
	14.3. setleft()
	14.4. setright()
	14.5. on()
	14.6. off()
	14.7. onfor( seconds )
	14.8. read( pin )
	14.9. pullnone( pin )
	14.10. pullup( pin )
	14.11. pulldown( pin )
	14.12. stopall()
	14.13. neopixel( pixels )
	14.14. tone( frequency )
	14.15. tonefor( frequency , seconds )
	14.16. Musical note constants

	Chapter 15. EEPROM built-in functions
	15.1. eeprom.write()
	15.2. eeprom.show()
	15.3. eeprom.load()
	15.4. eeprom.erase()
	15.5. reset()

	Chapter 16. Temperature Conversion Function
	16.1. temperature( sensorvalue )

	Chapter 17. Curses built-in functions
	17.1. curses.initscr()
	17.2. curses.endwin()
	17.3. curses.noecho(), curses.echo(), curses.cbreak(), curses.nocbreak()
	17.4. stdscr.nodelay( nodelay )
	17.5. stdscr.erase()
	17.6. stdscr.addstr( row , column , string )
	17.7. stdscr.move( row , column )
	17.8. stdscr.refresh()
	17.9. stdscr.getch()

	Chapter 18. Snek Development Environment
	18.1. Starting Snekde
	18.2. Basic Navigation
	18.3. Connecting to a Device
	18.4. Getting and Putting Programs to a Device
	18.5. Loading and Saving Programs to the Host


	Appendix A: Snek on snekboard
	Appendix B: Snek on Arduino Duemilanove, LilyPad, Nano and Uno
	B.1. Installing Optiboot on ATMega 328 boards
	B.2. Installing Snek on ATMega 328 boards

	Appendix C: Snek on Adafruit ItsyBitsy and the Crowd Supply µduino
	Appendix D: Snek on Adafruit ItsyBitsy M0
	Appendix E: Snek on Arduino Mega
	Appendix F: Snek on Arduino Nano Every
	Appendix G: Snek on Metro M0 Express
	Appendix H: Snek on Feather M0 Express
	Appendix I: Snek on Adafruit Crickit
	Appendix J: Snek on Adafruit Circuit Playground Express
	Appendix K: Snek on Arduino SA Nano 33 IoT
	Appendix L: Snek on Lego EV3
	Index

