
The Snek Programming Language
A Python-inspired Embedded Computing Language

Keith Packard

Version v1.13, 2025-09-05

Table of Contents
License . 1

Acknowledgments . 2

1. History and Motivations . 3

1.1. Arduino in the Lego Program . 3

1.2. A New Language . 4

1.3. Introducing Snek. 4

2. A Gentle Snek Tutorial . 5

2.1. Hello World . 5

2.2. Variables. 6

2.3. Functions . 6

2.4. Simple Arithmetic . 7

2.5. Loops, Ranges and Printing Two Values . 8

2.6. Lists and Tuples. 9

2.7. Dictionaries . 11

2.8. While. 12

2.9. If . 13

2.10. Controlling GPIOs . 14

Snek Reference Manual. 17

3. Lexical Structure . 19

3.1. Numbers . 19

3.2. Names . 19

3.3. Keywords . 20

3.4. Punctuation. 20

3.5. White Space (Spaces and Newlines) . 20

3.6. String Constants . 21

3.7. List and Tuple Constants. 21

3.8. Dictionary Constants . 22

4. Data Types . 23

4.1. Lists and Tuples . 23

5. Operators . 25

5.1. Slices . 27

5.2. String Interpolation . 28

6. Expression and Assignment Statements . 31

7. Control Flow . 33

7.1. if . 33

7.2. while. 33

7.3. for . 34

7.4. return value . 35

7.5. break. 35

7.6. continue . 36

7.7. pass . 37

8. Other Statements . 39

8.1. import name . 39

8.2. from name import * . 39

8.3. global name [, name …] . 39

8.4. del location . 40

8.5. assert value . 40

9. Functions . 41

9.1. def . 41

10. Standard Built-in Functions . 43

10.1. len(value) . 43

10.2. print(value1 , `value2, …, end='\n') . 43

10.3. sys.stdout.flush(). 43

10.4. ord(string) . 43

10.5. chr(number) . 44

10.6. abs(number) . 44

10.7. sqrt(number) . 44

11. Common System Functions . 45

11.1. exit(value) . 45

11.2. sleep(seconds). 45

11.3. monotonic(). 45

11.4. seed(seed). 45

11.5. random() . 45

11.6. randrange(max) . 46

12. Input Functions . 47

12.1. float(value) . 47

12.2. input(prompt) . 47

13. Math Functions . 49

13.1. Number-theoretic and representation functions . 49

13.2. Power and logarithmic functions. 50

13.3. Trigonometric functions . 51

13.4. Angular conversion . 51

13.5. Hyperbolic functions . 51

13.6. Special functions . 52

13.7. Mathematical constants . 52

14. GPIO Functions . 53

14.1. talkto(pin) . 53

14.2. setpower(power). 53

14.3. setleft() . 53

14.4. setright() . 53

14.5. on() . 53

14.6. off(). 53

14.7. onfor(seconds). 54

14.8. read(pin) . 54

14.9. pullnone(pin) . 54

14.10. pullup(pin) . 54

14.11. pulldown(pin) . 54

14.12. stopall() . 54

14.13. neopixel(pixels) . 54

14.14. tone(frequency) . 55

14.15. tonefor(frequency , seconds) . 55

14.16. Musical note constants . 55

15. EEPROM built-in functions . 57

15.1. eeprom.write() . 57

15.2. eeprom.show() . 57

15.3. eeprom.load() . 57

15.4. eeprom.erase() . 57

15.5. reset() . 57

16. Temperature Conversion Function . 59

16.1. temperature(sensorvalue) . 59

17. Curses built-in functions. 61

17.1. curses.initscr() . 61

17.2. curses.endwin() . 61

17.3. curses.noecho(), curses.echo(), curses.cbreak(), curses.nocbreak(). 61

17.4. stdscr.nodelay(nodelay) . 61

17.5. stdscr.erase() . 61

17.6. stdscr.addstr(row , column , string) . 61

17.7. stdscr.move(row , column) . 61

17.8. stdscr.refresh() . 62

17.9. stdscr.getch() . 62

18. Snek Development Environment . 63

18.1. Starting Snekde . 63

18.2. Basic Navigation. 63

18.3. Connecting to a Device . 63

18.4. Getting and Putting Programs to a Device . 64

18.5. Loading and Saving Programs to the Host. 64

Appendix A: Snek on snekboard . 65

Appendix B: Snek on Arduino Duemilanove, LilyPad, Nano and Uno . 66

B.1. Installing Optiboot on ATMega 328 boards . 66

B.2. Installing Snek on ATMega 328 boards . 66

Appendix C: Snek on Adafruit ItsyBitsy and the Crowd Supply µduino . 69

Appendix D: Snek on Adafruit ItsyBitsy M0 . 71

Appendix E: Snek on Arduino Mega . 72

Appendix F: Snek on Arduino Nano Every . 73

Appendix G: Snek on Metro M0 Express. 74

Appendix H: Snek on Feather M0 Express . 75

Appendix I: Snek on Adafruit Crickit . 76

Appendix J: Snek on Adafruit Circuit Playground Express . 77

Appendix K: Snek on Arduino SA Nano 33 IoT. 79

Appendix L: Snek on Lego EV3 . 80

Index . 83

License
Copyright © 2019 Keith Packard

This document is released under the terms of the GNU General Public License, Version 3 or later
[https://www.gnu.org/licenses/gpl-3.0.en.html]

License 1

GNU General Public License Version 3 or later 1

https://www.gnu.org/licenses/gpl-3.0.en.html

Acknowledgments
Thanks to Jane Kenney-Norberg for building a science and technology education program using
Lego. Jane taught my kids science in elementary school and Lego after school, and let me come and
play too. I’m still there helping and teaching, even though my kids are nearly done with their
undergraduate degrees.

Thanks to Christopher Reekie and Henry Gillespie who are both students and student-teacher in
Jane’s program and who have helped teach Arduino programming using Lego robots. Christopher
has also been helping design and test Snek.

Keith Packard
keithp@keithp.com
https://keithp.com

2 The Snek Programming Language

2 © 2019 Keith Packard

mailto:keithp@keithp.com
https://keithp.com

Chapter 1. History and Motivations
Teaching computer programming to students in the 10-14 age range offers some interesting
challenges. Graphical languages that construct programs from elements dragged with a mouse or
touch-pad can be frustratingly slow. Users of these languages don’t develop portable skills
necessary for more advanced languages. Sophisticated languages like C, Java and even Python are
so large as to overwhelm the novice with rich semantics like “objects” and other higher level
programming constructs.

In days long past, beginning programmers were usually presented with microcomputers running
very small languages: BASIC, Forth, Logo or the like. These languages were not restricted to aid the
student, but because the hosts they ran on were small.

Introductory programming is taught today in a huge range of environments, from embedded
systems to cloud-based systems. Many of these are technological dead-ends — closed systems that
offer no way even to extract source code, much less to reuse it in another environment.

Some systems, such as Raspberry PI and Arduino, are open — they use standard languages so that
skills learned with them are useful elsewhere. While the smallest of these machines are similar in
memory and CPU size to those early microcomputers, these smaller machines are programmed as
embedded computers using a full C++ compiler running on a separate desktop or laptop system.

1.1. Arduino in the Lego Program

I brought Arduino systems into the classroom about five years ago. The hardware was fabulous and
we built a number of fun robots. After a couple of years, I built some custom Arduino hardware for
our needs. Our hardware has screw terminals for the inputs and outputs, a battery pack on the
back and high-current motor controllers to animate the robots. Because these platforms are
Arduino (with an ATmega 328P processor and a FTDI USB to serial converter) we can use the stock
Arduino development tools.

Students struggled with the complex syntax of Arduino C: they found it especially hard to type the
obscure punctuation marks and to remember to insert semicolons. I often heard comments like
“this takes too much typing” and “why is it so picky about semicolons?” The lack of an interactive
mode made experimenting a bit slower than on our Logo systems. In spite of the difficulties, there
have been students who have done interesting projects in Arduino robotics:

• Chris Reekie, an 11th-grade student-teacher in the program, took the line follower robot design
and re-wrote the Arduino firmware to include a PID controller algorithm. The results were
spectacular, with the robot capable of smoothly following a line at high speed.

• Henry Gillespie, another 11th-grade student-teacher, created a robot that automatically
measured a person’s height. This used an optical sensor to monitor movement of a beam as it
lowered onto the person’s head and showed measurements on an attached 7-segment display.
We’ve shown this device at numerous local Lego shows.

• Mark Fernandez, an eighth-grade student, built a solar energy system that automatically tracked
the sun. Mark is now a mechanical engineering student at Washington University in St Louis.

The hardware was just what we wanted, and a few students used skills learned in the program later
on. However, the software was not aimed at young students just starting to write code. Instead of

Chapter 1. History and Motivations 3

GNU General Public License Version 3 or later 3

throwing out our existing systems and starting over, I wondered if we couldn’t keep using the same
(hand-made) hardware but improve the programming environment.

1.2. A New Language

I searched for a tiny programming language that could run on Arduino and offer an experience
more like Lego Logo. I wanted something that students could use as a foundation for further
computer education and exploration, something very much like Python.

There is a smaller version of Python, called MicroPython: it is still a fairly large language which takes
a few hundred kB of ROM and a significant amount of RAM. The language is also large enough that
we couldn’t cover it in any detail in our class time.

I finally decided to just try and write a small Python-inspired language that could fit on our existing
Arduino Duemilanove compatible hardware. This machine has:

• 32kB of Flash

• 2kB of RAM

• 1kB of EEPROM

• 1 serial port hooked to a USB/serial converter

• 1 SPI port

• 6 Analog inputs

• 14 Digital input/output pins

I believe that shrinking the language to a small Python subset will let the language run on this
hardware while also being simple enough to expose students to the whole language in a small
amount of class time.

1.3. Introducing Snek

The goals of the Snek language are:

• Text-based. A text-based language offers a richer environment for people comfortable with
using a keyboard. It is more representative of real-world programming than building software
using icons and a mouse.

• Forward-looking. Skills developed while learning Snek should be transferable to other
development environments.

• Small. This is not just to fit in smaller devices: the Snek language should be small enough to
teach in a few hours to people with limited exposure to software.

Snek is Python-inspired, but it is not Python. It is possible to write Snek programs that run under a
full Python system, but most Python programs will not run under Snek.

4 The Snek Programming Language

4 © 2019 Keith Packard

Chapter 2. A Gentle Snek Tutorial
Before we get into the details of the language, let’s pause and just explore the language a bit to get
a flavor of how it works. We won’t be covering anything in detail, nor will all the subtleties be
explored. The hope is to provide a framework for those details.

This tutorial shows what appears on the screen — both what the user types and what Snek

displays. User input is shown in bold face, like this on the lines which start with > or +.

Snek output is shown in a lighter face, like this on other lines.

2.1. Hello World

A traditional exercise in any new language is to get it to print the words hello, world to the
console. Because Snek offers an interactive command line, we can actually do this in several ways.

The first way is to use Snek to echo back what you type at it. Start up Snek on your computer

(perhaps by finding Snek in your system menu or by typing snek at the usual command prompt).
When it first starts, Snek will introduce itself and then wait for you to type something.

Welcome to Snek version v1.13
>

At this `> ` prompt, Snek will print anything you type to it:

> 'hello, world'
'hello, world'

Here we see that Snek strings can be enclosed in single quotes. Strings can also be enclosed in
double quotes, which can be useful if you want to include single quote marks in them. Snek always
prints strings using single quotes, so the output here is the same as before.

> "hello, world"
'hello, world'

Snek is actually doing something a bit more complicated than echoing what you type. What you are
typing is called an “expression”, and Snek takes the expression, computes the value that it

represents and prints that out. In this case, the value of either 'hello, world' or "hello,
world" is 'hello, world'.

Stepping up a notch, instead of inputting 'hello, world' directly, we can write a more
complicated expression which computes it:

Chapter 2. A Gentle Snek Tutorial 5

GNU General Public License Version 3 or later 5

> 'hello,' + ' world'
'hello, world'

At this point, we’re using the feature of the interactive environment which prints out the value of
expressions entered. Let’s try using the print function instead:

> print('hello, world')
hello, world

This time, Snek printed the string without quote marks. That’s because the print function displays
exactly what it was given without quote marks while the command processor prints values in the
same format as they would appear in a program (where you’d need the quote marks).

You might wonder where the value from evaluating the expression print('hello,
world') is printed. After all, Snek printed the value of other expressions. The answer is that

the print function evaluates to “no value”, and when Snek sees “no value”, it doesn’t print
anything. We’ll see this happen several more times during the tutorial.

2.2. Variables

Variables are Snek’s way of remembering things. Each variable has a name, like moss or tree, and

each variable can hold one. You set (or “assign”) the value of a variable using the = operator, and
you get the value by using the name elsewhere:

> moss = 'hello, world'
> moss
'hello, world'

Snek creates a variable whenever you assign a value to it for the first time.

2.3. Functions

Let’s define a function which uses print to print hello world and call it. To define a new function

in Snek, we use the def keyword like this:

> def hello():
+ print('hello, world')
+

6 The Snek Programming Language

6 © 2019 Keith Packard

> hello()
hello, world

There’s lots of stuff going on here. First, we see how to declare a function by using the def keyword,
followed by the name of the function, followed by the “arguments” in parentheses. We’ll talk about

arguments in the next section, Simple Arithmetic. For now just type (). After the arguments there’s
a colon.

Colons appear in several places in Snek and (outside of dictionaries) are used in the same way.
After a colon, Snek expects to see a list of statements. The usual way of including a list of
statements is to type them, one per line, indented from the line containing the colon by a few
spaces. The number of spaces doesn’t matter, but each line has to use the same indentation. When
you’re done with the list of statements, you enter a line with the old indentation level.

While entering a list of statements, the command processor will prompt with + instead of > to let
you know that it’s still waiting for more input before it does anything. A blank line ends the list of

statements for the hello function and gets you back to the regular command prompt.

Finally, we call the new hello function and see the results.

Snek normally ends each print operation by moving to the next line. That’s because the print

function has a named parameter called end which is set to a newline ('\n') by default. You can
change it to whatever you like, as in:

> def hello():
+ print('hello', end=',')
+ print(' world', end='\n')
+
> hello()
hello, world

The first call appends a , to the output, while the second call explicitly appends a newline
character, causing the output to move to the next line. There are a few characters that use this
backslash notation; those are described in the section on String Constants.

2.4. Simple Arithmetic

Let’s write a function to convert from Fahrenheit temperatures to Celsius. If you recall, that’s:

°C = (5/9)(°F - 32)

Snek can’t use the ° sign in variable names, so we’ll just use C and F:

> # Convert from Fahrenheit to Celsius

Chapter 2. A Gentle Snek Tutorial 7

GNU General Public License Version 3 or later 7

> def f_to_c(F):
+ return (5/9) * (F - 32)
+
> f_to_c(38)
3.333333

The # character introduces a comment, which extends to the end of the line. Anything within a
comment is ignored by Snek.

The f_to_c function takes one “argument” called F. Inside the function, F is a variable which is set

to the value you place inside the parentheses when you call f_to_c. In this example, we’re calling

f_to_c with the value 38. Snek gets the value 38 from F whenever Snek finds it in the function:

+ return (5/9) * (F - 32)
⇒
 return (5/9) * (38 - 32)
⇒
 return 3.333333

Snek requires an explicit multiplication operator, *, as it doesn’t understand the mathematical
convention that adjacent values should be multiplied. The return statement is how we tell Snek that
this function computes a value that should be given back to the caller.

Numbers in Snek may be written using _ as a separator, which is especially useful when writing
large numbers.

> # you can write
> c = 299_792_458
> # and Snek will interpret as
> c = 299792458

2.5. Loops, Ranges and Printing Two Values

Now that we have a function to do this conversion, we can print a handy reference table for offline
use:

> # Print a handy conversion table
> def f_to_c_table():
+ for F in range(0, 100, 10):
+ C = f_to_c(F)

8 The Snek Programming Language

8 © 2019 Keith Packard

+ print('%f F = %f C' % (F, C))
+
> f_to_c_table()
0.000000 F = -17.777779 C
10.000000 F = -12.222223 C
20.000000 F = -6.666667 C
30.000000 F = -1.111111 C
40.000000 F = 4.444445 C
50.000000 F = 10.000000 C
60.000000 F = 15.555556 C
70.000000 F = 21.111113 C
80.000000 F = 26.666668 C
90.000000 F = 32.222225 C

We see a new statement here: the for statement. This walks over a range of values, assigning the

control variable (F, in this case) to each of the values in the range and then evaluating the list of

statements within it. The range function creates the list of values for F by starting at the first value

and stepping to just before the second value. If you give range only two arguments, Snek will step

by 1. If you give range only one argument, Snek will use 0 as the starting point.

We need to insert the numeric values into the string shown by print. Many languages use a special
formatted-printing function to accomplish this. In Snek, there’s a more general-purpose mechanism

called “string interpolation”. String interpolation uses the % operator. Snek walks over the string on
the left and inserts values from the list of values enclosed in parenthesis on the right wherever

there is a % followed by a character. The result of string interpolation is another string which is then
passed to print, which displays it.

How the values are formatted depends on the character following the % mark; that’s discussed in
the String Interpolation section. How to make that set of values on the right is discussed in the next
section, Lists and Tuples

2.6. Lists and Tuples

Lists and Tuples in Snek are closely related data types. Both represent an ordered set of objects.
The only difference is that Lists can be modified after creation while Tuples cannot. We call Lists
“mutable” and Tuples “immutable”. Lists are input as objects separated by commas and enclosed in
square brackets, Tuples are input as objects separated by commas and enclosed in parentheses:

> ['hello,', ' world']
['hello,', ' world']
> ('hello,', ' world')
('hello,', ' world')

Chapter 2. A Gentle Snek Tutorial 9

GNU General Public License Version 3 or later 9

Let’s assign these to variables so we can explore them in more detail:

> l = ['hello,', ' world']
> t = ('hello,', ' world')

As mentioned earlier, Lists and Tuples are ordered. That means that each element in a List or Tuple
can be referenced by number. This number is called the index of the element, in Snek, indices start
at 0:

> l[0]
'hello,'
> t[1]
' world'

Lists can be modified, Tuples cannot:

> l[0] = 'goodbye,'
> l
['goodbye,', ' world']
> t[0] = 'beautiful'
<stdin>:5 invalid type: ('hello,', ' world')

That last output is Snek telling us that the value ('hello', ' world') cannot be modified.

We can use another form of the for statement to iterate over the values in a List or Tuple:

> def print_list(list):
+ for e in list:
+ print(e)
+
> print_list(l)
goodbye,
 world
> print_list(t)
hello,
 world

Similar to the form described in the Loops, Ranges and Printing Two Values section, this for
statement assigns the control variable (e in this case) to each of the elements of the list in turn and

10 The Snek Programming Language

10 © 2019 Keith Packard

evaluates the statements within it.

Lists and Tuples can be concatenated (joined into a single thing) with the + operator:

> ['hello,'] + [' world']
['hello,', ' world']

Tuples of one element have a slightly odd syntax, to distinguish them from expressions enclosed in
parentheses: the value within the Tuple is followed by a comma:

> ('hello' ,) + ('world' ,)
('hello', 'world')

2.7. Dictionaries

Dictionaries are the fanciest data structure in Snek. Like Lists and Tuples, Dictionaries hold multiple
values. Unlike Lists and Tuples, Dictionaries are not indexed by numbers. Instead, Dictionaries are
indexed by another Snek value. The only requirement is that the index value be immutable, so that
it can never change. Lists and Dictionaries are the only mutable data structures in Snek: anything
else can be used as a Dictionary index.

The indexing value in a Dictionary is called the “key”, the indexed value is called the “value”.
Dictionaries are input by enclosing key/value pairs, separated by commas, inside curly braces:

> { 1:2, 'hello,' : ' world' }
{ 'hello,':' world', 1:2 }

Note that Snek re-ordered our dictionary. That’s because Dictionaries are always stored in sorted
order, and that sorting includes the type of the keys. Dictionaries can contain only one element with
a given key: you’re free to specify dictionaries with duplicate keys, but only the last value will occur
in the resulting Dictionary.

Let’s assign our Dictionary to a variable and play with it a bit:

> d = { 1:2, 'hello,' : ' world' }
> d[1]
2
> d['hello,']
' world'
> d[1] = 3
> d['goodnight'] = 'moon'

Chapter 2. A Gentle Snek Tutorial 11

GNU General Public License Version 3 or later 11

> d
{ 'goodnight':'moon', 'hello,':' world', 1:3 }
> d[56]
<stdin>:7 invalid value: 56

This example shows creating the Dictionary and assigning it to d, then fetching elements of the
dictionary and assigning new values. You can add elements to a dictionary by using an index that is
not already present. When you ask for an element which isn’t present, you get an error message.

You can also iterate over the keys in a Dictionary using the same for syntax used above. Let’s try

our print_list function on d:

> print_list(d)
goodnight
hello,
1

You can test to see if an element is in a Dictionary using the in operator:

> if 1 in d:
+ print('yup')
+ else:
+ print('nope')
+
yup
> if 56 in d:
+ print('yup')
+ else:
+ print('nope')
+
nope

2.8. While

The for statement is useful when iterating over a range of values. Sometimes we want to use more
general control flow. We can rewrite our temperature conversion chart program using a while loop
as follows:

> def f_to_c_table():

12 The Snek Programming Language

12 © 2019 Keith Packard

+ F = 0
+ while F < 100:
+ C = f_to_c(F)
+ print('%f F = %f C' % (F, C))
+ F = F + 10
+
> f_to_c_table()
0.000000 F = -17.777779 C
10.000000 F = -12.222223 C
20.000000 F = -6.666667 C
30.000000 F = -1.111111 C
40.000000 F = 4.444445 C
50.000000 F = 10.000000 C
60.000000 F = 15.555556 C
70.000000 F = 21.111113 C
80.000000 F = 26.666668 C
90.000000 F = 32.222225 C

This does exactly what the for loop did in the Loops, Ranges and Printing Two Values section: it first

assigns 0 to F, then iterates over the statements until F is no longer less than 100.

2.9. If

If statements provide a way of selecting one of many paths of execution. Each block of statements

is preceded by an expression: if the expression evaluates to True, then the following statements

are executed. Otherwise, the next test is tried until the end of the if is reached. Here’s a function
which measures how many upper case letters, lower case letters and digits are in a string:

> def count_chars(s):
+ d = 0
+ l = 0
+ u = 0
+ o = 0
+ for c in s:
+ if '0' <= c and c <= '9':
+ d += 1
+ elif 'a' <= c and c <= 'z':
+ l += 1
+ elif 'A' <= c and c <= 'Z':
+ u += 1

Chapter 2. A Gentle Snek Tutorial 13

GNU General Public License Version 3 or later 13

+ else:
+ o += 1
+ print('digits %d" % d)
+ print('lower %d" % l)
+ print('upper %d" % u)
+ print('other %d" % o)
+
> count_chars('4 Score and 7 Years Ago')
digits 2
lower 13
upper 3
other 5

The elif statements try other alternatives if previous if tests have not worked. The else
statement is executed if all previous if and elif tests have not worked.

This example also introduces the less-than-or-equal comparison operator <= and demonstrates

that for v in a also works on strings.

2.10. Controlling GPIOs

General-purpose IO pins, or “GPIOs”, are pins on an embedded processor which can be controlled
by a program running on that processor.

When Snek runs on embedded devices like the Duemilanove or the Metro M0 Express, it provides
functions to directly manipulate these GPIO pins. You can use either of these, or any other device
which uses the standard Arduino pin numbers, for these examples.

2.10.1. Turning on the built-in LED

Let’s start by turning on the LED which is usually available on Digital pin 13:

> talkto(D13)
> on()

Let’s get a bit fancier and blink it:

> talkto(D13)
> while True:
+ onfor(.5)
+ sleep(.5)

14 The Snek Programming Language

14 © 2019 Keith Packard

2.10.2. Hooking up a digital input

Find a bit of wire to connect from Digital pin 1 to GND and let’s control the LED with this primitive
switch:

> talkto(D13)
> while True:
+ if read(D1):
+ on()
+ else:
+ off()

When the wire is connected, the LED turns off, and when the wire is not, the LED turns on. That’s
how simple switches work on Arduino.

Snek repeatedly reads the input and sets the LED as fast as it can. This happens thousands of times
per second, giving the illusion that the LED changes the instant the switch changes.

2.10.3. Using an analog input

If you’ve got a light sensor or potentiometer, you can hook that up to Analog pin 0 and make the
LED track the sensor:

> talkto(D13)
> while True:
+ onfor(1-read(A0))
+ sleep(1-read(A0))

2.10.4. Controlling motors

So far we’ve only talked about using one pin at a time. Arduino motor controllers take two pins: one
for power and one for direction. Snek lets you tell it both pins at the same time and then provides
separate functions to set the power and direction. If you have a motor controller hooked to your
board with pin 3 as power and pin 2 as direction you can run the motor at half power and have it
alternate directions with:

> talkto((3,2))
> setpower(0.5)
> on()
> while True:
+ setleft()
+ sleep(1)

Chapter 2. A Gentle Snek Tutorial 15

GNU General Public License Version 3 or later 15

+ setright()
+ sleep(1)

16 The Snek Programming Language

16 © 2019 Keith Packard

Snek Reference Manual
The remainder of this book is a reference manual for the Snek language, including built-in functions
and the Snek development environment.

 17

GNU General Public License Version 3 or later 17

18 The Snek Programming Language

18 © 2019 Keith Packard

Chapter 3. Lexical Structure
Snek programs are broken into a sequence of tokens by a lexer. The sequence of tokens is
recognized by a parser.

3.1. Numbers

Snek supports 32-bit floating point numbers and understands the usual floating point number
format:

<integer><fraction><exponent>
123.456e+12

integer

A non-empty sequence of decimal digits

fraction

A decimal point (period) followed by a possibly empty sequence of decimal digits

exponent

The letter 'e' or 'E' followed by an optional sign and a non-empty sequence of digits indicating
the exponent magnitude.

All parts are optional, although the number must include at least one digit in either the integer part
or the fraction.

Floating point values (represented internally in IEEE 854 32-bit format) range from approximately

-1.70141e+38 to 1.70141e+38. There is 1 sign bit, 8 bits of exponent and 23 stored/24 effective
bits of significand (often referred to as the mantissa). There are two values of infinity (positive and
negative) and a “Not a Number” (NaN) value indicating a failed computation. Computations using
integer values will generate an error for values which cannot be represented as a 24-bit integer.
That includes values that are too large and values with fractional components.

3.2. Names

Names in Snek are used to refer to variables, both global and local to a particular function. Names
consist of an initial letter or underscore, followed by a sequence of letters, digits, underscore and
period. Here are some valid names:

hello
_hello
_h4
sqrt

Chapter 3. Lexical Structure 19

GNU General Public License Version 3 or later 19

And here are some invalid names:

.hello
4square

3.3. Keywords

Keywords look like regular Snek names, but they are handled specially by the language and thus
cannot be used as names. Here is the list of Snek keywords:

and assert break continue
def del elif else
for from global if
import in is not
or pass range return
while

3.4. Punctuation

Snek uses many special characters to make programs more readable; separating out names and
keywords from operators and other syntax.

 : ; , () [] {
 } + - * ** / // %
 & | ~ ^ << >> = +=
-= *= **= /= //= %= &= |=
~= ^= <<= >>= > != < <=
== >= >

3.5. White Space (Spaces and Newlines)

Snek uses indentation to identify program structure. Snek does not permit tabs to be used for
indentation; tabs are invalid characters in Snek programs. Statements in the same block (list of
statements) are indented the same amount; statements in deeper blocks are indented more,
statements in shallower blocks less.

When typing Snek directly at the Snek prompt blank lines become significant, as Snek cannot know
what you will type next. You can see this in the Tutorial, where Snek finishes an indented block at
the blank line.

20 The Snek Programming Language

20 © 2019 Keith Packard

When loading Snek from a file, blank lines (and lines which contain only a comment) are entirely
ignored; indentation of those lines doesn’t affect the block indentation level. Only lines with Snek
tokens matter in this case.

Spaces in the middle of the line are only significant if they are necessary to separate tokens; you
can insert as many or as few as you like in other places.

3.6. String Constants

String constants in Snek are enclosed in either single or double quotes. Use single quotes to easily
include double quotes in the string, and vice-versa. Strings cannot span multiple lines, but you can
input multiple strings adjacent to one another and they will be merged into a single string constant
in the program.

\n

Newline. Advance to the first column of the next line.

\r

Carriage Return. Move to the first column on the current line.

\t

Tab. Advance to the next 'tab stop' in the output. This is usually the next multiple-of-8 column in
the current line.

\xdd

Hex value. Use two hex digits to represent any character.

\\

Backslash. Use two backslashes in the input to get one backslash in the string constant.

Anything else following the backslash is just that character. In particular:

\"

Literal double-quote. Useful inside double-quoted strings.

\'

Literal single-quote. Useful inside single-quoted strings.

3.7. List and Tuple Constants

List and Tuple constants in Snek are values separated by commas and enclosed in brackets: square
brackets for Lists, parentheses for Tuples.

Here are some valid Lists:

[1, 2, 3]
['hello', 'world']

Chapter 3. Lexical Structure 21

GNU General Public License Version 3 or later 21

[12]

Here are some valid Tuples:

(1, 2, 3)
('hello', 'world')
(12,)

Note the last case — to distinguish between a value in parentheses and Tuple with one value, the
Tuple needs to have a trailing comma. Only single-valued Tuples are represented with a trailing
comma.

3.8. Dictionary Constants

Dictionaries in Snek are key/value pairs separated by commas and enclosed in curly braces. Keys
are separated from values with a colon.

Here are some valid Dictionaries:

{ 1:2, 3:4 }
{ 'pi' : 3.14, 'e' : 2.72 }
{ 1: 'one' }

You can include entries with duplicate keys: the resulting Dictionary will contain only the last entry.
The order of the entries does not matter otherwise: the resulting dictionary will always be the
same:

> { 1:2, 3:4 } == { 3:4, 1:2 }
1

When Snek prints dictionaries, they are always printed in the same order, so two equal dictionaries
will have the same string representation.

22 The Snek Programming Language

22 © 2019 Keith Packard

Chapter 4. Data Types
Like Python, Snek does not have type declarations. Instead, each value has an intrinsic
representation — any variable may hold a value with any representation. To keep things reasonably
simple, Snek has only a handful of representation types:

Numbers

Instead of having integers and floating point values, Snek represents numbers in floating point
as described earlier. Integer values of less than 24 bits can be represented exactly in these
floating point values: programs requiring precise integer behavior can still work as long as the
values can be held in 24-bits.

Strings

Strings are just lists of bytes. Snek does not have any intrinsic support for encodings. Because
they are just lists of bytes, you can store UTF-8 values in them comfortably. Just don’t expect
indexing to return Unicode code points.

Lists

Lists are ordered collections of values. You can change the contents of a list by adding or
removing elements. In other languages, these are often called arrays or vectors. Lists are
“mutable” values.

Tuples

Tuples are immutable lists of values. You can’t change a tuple itself once it is created. If any
element of the tuple is mutable, you can modify that element and see the changed results in the
tuple.

Dictionaries

A dictionary is a mapping between keys and values. They work somewhat like Lists in that you
can store and retrieve values in them. The index into a Dictionary may be any immutable value,
which is any value other than a List or Dictionary or Tuple containing a List or Dictionary.
Dictionaries are “mutable” values.

Functions

Functions are values in Snek. You can store them in variables or lists, and then fetch them later.

Boolean

Like Python, Snek doesn’t have an explicit Boolean type. Instead, a variety of values work in
Boolean contexts as True or False values. All non-zero Numbers, non-empty
Strings/Lists/Tuples/Dictionaries and all Functions are True. Zero, empty
Strings/Lists/Tuples/Dictionaries are False. The name True is just another way of typing the
number one. Similarly, the name False is just another way of typing the number zero.

4.1. Lists and Tuples

The ``=`` operator works a bit different on Lists than any other type — it appends to the existing
list rather than creating a new list. This can be seen in the following example:(((=)))

Chapter 4. Data Types 23

GNU General Public License Version 3 or later 23

> a = [1,2]
> b = a
> a += [3]
> b
[1, 2, 3]

Compare this with Tuples, which (as they are immutable) cannot be appended to. In this example, b
retains the original Tuple value. a gets a new Tuple consisting of (3,) appended to the original
value.

> a = (1,2)
> b = a
> a += (3,)
> b
(1, 2)
> a
(1, 2, 3)

24 The Snek Programming Language

24 © 2019 Keith Packard

Chapter 5. Operators
Operators are things like + or –. They are part of the grammar of the language and serve to make
programs more readable than they would be if everything was a function call. Like Python, the
behavior of Snek operators often depends on the values they are operating on. Snek includes most
of the Python operators. Some numeric operations work on floating point values, others work on
integer values. Operators which work only on integer values convert floating point values to
integers, and then take the integer result and convert back to a floating point value.

value + value

The Plus operator performs addition on numbers or concatenation on strings, lists and tuples.

value – value

The Minus operator performs subtraction on numbers.

value * value

The Multiplication operator performs multiplication on numbers. If you multiply a string, 's', by a
number, 'n', you get 'n' copies of 's' concatenated together.

value / value

The Divide operator performs division on numbers.

value // value

The Div operator performs “integer division” on numbers, producing a result such that x // y
== floor(x / y) for all numbers x and y.

value % value

The Modulus operator gives the “remainder after division” of its arguments, such that x == y *
(x // y) + x % y for all numbers x and y. If the left operand is a string, it performs
“interpolation” with either a single value or a list/tuple of values and is used to generate
formatted output. See the String Interpolation section for details.

value ** value

The Power operator performs exponentiation on numbers.

value & value

The Binary And operator performs bit-wise AND on integers.

value | value

The Binary Or operator performs bit-wise OR on integers.

value ^ value

The Binary Xor operator performs bit-wise XOR on integers.

value << value

The Left Shift operator does bit-wise left shift on integers.

Chapter 5. Operators 25

GNU General Public License Version 3 or later 25

value >> value

The Right Shift operator does bit-wise left shift on integers.

not value

The Boolean Not operator yields True if its argument is False, False otherwise. That is, if the

operand is one of the True values, then Not returns False (which is 0), and if the operand is a

False value, then Not returns True (which is 1).

a and b

The Boolean And operator first evaluates a. If that is False, then its value is returned. Otherwise,
the value of b is returned.

a or b

The Boolean And operator first evaluates a. If that is True, then its value is returned. Otherwise,
the value of b is returned.

a is b

True if a and b are the same object.

a is not b

True if a and b are not the same object.

a in b

True if a is contained in b. For strings, this means that a is a substring of b. If b is a tuple or list,
this means that a is one of the elements of b. If b is a dictionary, this means that a is one of the
keys of b.

a not in b

This is the same as not (a in b).

~ value

The Binary Not operator performs a bit-wise NOT operation on its integer operand.

– value

When used as a unary prefix operator, the Unary Minus operator performs negation on
numbers.

+ value

When used as a unary prefix operator, the Unary Plus operator does nothing at all to a
number.

value [index]
The Index operator selects the index-th member of strings, lists, tuples and dictionaries.

[value [, value …]]
The List operator creates a new List with the provided members. Note that a List of one value
does not have any comma after the value and is distinguished from the Index operator solely by
how it appears in the input.

26 The Snek Programming Language

26 © 2019 Keith Packard

(value)
Parenthesis serve to control the evaluation order within expressions. Values inside the
parenthesis are computed before they are used as values for other operators.

(value ,) or (value [, value …])
The Tuple operator creates a new Tuple with the provided members. A Tuple of one value needs
a trailing comma so that it can be distinguished from an expression inside of parenthesis.

{ key : value [, key : value …] }
The Dictionary operator creates a new Dictionary with the provided key/value pairs. All of the
keys must be immutable.

5.1. Slices

The Slice operator, value [base : bound : stride], extracts a sequence of values from Strings, Lists
and Tuples. It creates a new object with the specified subset of values from the original. The new
object matches the type of the original.

base

The first element of value selected for the slice. If base is negative, then it counts from the end of
value instead the beginning.

bound

The first element of value beyond the range selected for the slice.

stride

The spacing between selected elements. Stride may be negative, in which case elements are
selected in reverse order, starting towards the end of value and working towards the beginning.
It is an error for stride to be zero.

All three values are optional. The default value for stride is one. If stride is positive, the default value
for base is 0 and the default for bound is the length of the array. If stride is negative, the default

value for base is the index of the last element in value (which is len(value) – 1) and the default

value for bound is –1. A slice with a single colon is taken as indicating base and bound. Here are
some examples:

> # initialize a to a
> # Tuple of characters
> a = ('a', 'b', 'c', 'd', 'e', 'f')
> # With all default values, a[:] looks
> # the same as a
> a[:]
('a', 'b', 'c', 'd', 'e', 'f')
> # Reverse the Tuple
> a[::-1]

Chapter 5. Operators 27

GNU General Public License Version 3 or later 27

('f', 'e', 'd', 'c', 'b', 'a')
> # Select the end of the Tuple starting
> # at index 3
> a[3:]
('d', 'e', 'f')
> # Select the beginning of the Tuple,
> # ending before index 3
> a[:3]
('a', 'b', 'c')

5.2. String Interpolation

String interpolation in Snek can be confused with formatted printing in other languages. In Snek,

the print function prints any arguments as they are given, separating them with spaces on the
line. String interpolation produces a new String from a format specification String and a List or
Tuple of parameters: this new String can be used for printing or for anything else one might want a
String for.

If only a single value is needed, it need not be enclosed in a List or Tuple. Beware that if this single
value is itself a Tuple or List, then String interpolation will get the wrong answer.

Within the format specification String are conversion specifiers which indicate where to insert

values from the parameters. These are indicated with a % sign followed by a single character: this
character is the format indicator and specifies how to format the value. The first conversion
specifier uses the first element from the parameters, etc. The format indicator characters are:

%d
%i
%o
%x
%X

Format a number as a whole number, discarding any fractional part and without any exponent.

%d and %i present the value in base 10. %o uses base 8 (octal) and %x and %X use base 16

(hexadecimal), with %x using lower case letters (a-f) and %X using upper case letters (A-F).

%e
%E
%f
%F
%g
%G

Format a number as floating point. The upper case variants use E for the exponent separator,

lower case uses e and are otherwise identical. %e always uses exponent notation, %f never uses

exponent notation. %g uses whichever notation makes the output smaller.

28 The Snek Programming Language

28 © 2019 Keith Packard

%c
Output a single character. If the parameter value is a number, it is converted to the character. If
the parameter is a string, the first character from the string is used.

%s
Output a string. This does not insert quote marks or backslashes.

%r
Generate a printable representation of any value, similar to how the value would be represented
in a Snek program.

If the parameter value doesn’t match the format indicator requirements, or if any other character is

used as a format indicator, then %r will be used instead.

Here are some examples of String interpolation:

> print('hello %s' % 'world')
hello world
> print('hello %r' % 'world')
hello 'world'
> print('pi = %d' % 3.1415)
pi = 3
> print('pi = %f' % 3.1415)
pi = 3.141500
> print('pi = %e' % 3.1415)
pi = 3.141500e+00
> print('pi = %g' % 3.1415)
pi = 3.1415
> print('star is %c' % 42)
star is *
> print('%d %d %d' % (1, 2, 3))
1 2 3

And here are a couple of examples showing why a single value may need to be enclosed in a Tuple:

> a = (1,2,3)
> print('a is %r' % a)
a is 1
> print('a is %r' % (a,))
a is (1, 2, 3)

Chapter 5. Operators 29

GNU General Public License Version 3 or later 29

In the first case, String interpolation is using the first element of a as the value instead of using all

of a.

30 The Snek Programming Language

30 © 2019 Keith Packard

Chapter 6. Expression and Assignment
Statements
value

An Expression statement simply evaluates value. This can be useful if value has a side-effect, like
a function call that sets some global state. At the top-level, value is printed, otherwise it is
discarded.

location = value

The Assignment statement takes the value on the right operand and stores it in the location
indicated by the left operand. The left operand may be a variable, a list location or a dictionary
location.

location +=, –=, =, /=, //=, %=,*=, &=, |=, ^=, <<=, >>= value

The Operation Assignment statements take the value of the left operand and the value of the
right operand and performs the operation indicated by the operator. Then it stores the result
back in the location indicated by the left operand. There are some subtleties about this which
are discussed in the Lists and Tuples section of the Data Types chapter.

Chapter 6. Expression and Assignment Statements 31

GNU General Public License Version 3 or later 31

32 The Snek Programming Language

32 © 2019 Keith Packard

Chapter 7. Control Flow
Snek has a subset of the Python control flow operations, including trailing else: blocks for loops.

7.1. if
if value : block [elif value : …] [else: block]

An If statement contains an initial if block, any number of elif blocks and then (optionally) an

else block in the following structure:

if if_value :
 if statements
elif elif_value :
 elif_statements
…
else:
 else_statements

If if_value is true, then if_statements are executed. Otherwise, if elif_value is true, then elif_statements
are executed. If none of the if or elif values are true, then the else_statements are executed.

7.2. while
while value : block [else: block]

A While statements consists of a while block followed by an optional else block:

while while_value :
 block
else:
 block

While_value is evaluated and if it evaluates as True, the while block is executed. Then the system

evaluates while_value again, and if it evaluates as True again, the while block is again executed. This

continues until the while_value evaluates as False.

When the while_value evaluates as False, the else: block is executed. If a break statement is
executed as a part of the while statements, then the program immediately jumps past the else

statements. If a continue statement is executed as a part of the while statements, execution

jumps back to the evaluation of while_value. The else: portion (with else statements) is optional.

Chapter 7. Control Flow 33

GNU General Public License Version 3 or later 33

7.3. for
for name in value : block [else: block]

For each value v in the list of values, the for statement assigns v to name and then executes a block
of statements. Value can be specified in two different ways: as a List, Tuple, Dictionary or String
values, or as a range expression involving numbers:

for name in value:
 for statements
else:
 else statements

In this case, the value must be a List, Tuple, Dictionary or String. For Lists and Tuples, the values are
the elements of the object. For Strings, the values are strings made from each separate (ASCII)
character in the string. For Dictionaries, the values are the keys in the dictionary.

for name in range (start, stop, step):
 for statements
else:
 else statements

In this form, the for statement assigns a range of numeric values to name. Starting with start, and
going while not beyond stop, name gets step added at each iteration. Start is optional; if not present,
0 will be used. Step is also optional; if not present, 1 will be used.

> for x in (1,2,3):
+ print(x)
+
1
2
3
> for c in 'hi':
+ print(c)
+
h
i
> a = { 1:2, 3:4 }
> for k in a:
+ print('key is %r value is %r' % (k, a[k]))

34 The Snek Programming Language

34 © 2019 Keith Packard

+
key is 1 value is 2
key is 3 value is 4
> for i in range(3):
+ print(i)
+
0
1
2
> for i in range(2, 10, 2):
+ print(i)
+
2
4
6
8

If a break statement is executed as a part of the for statements, then the program immediately

jumps past the else statements. If a continue statement is executed as a part of the for
statements, execution jumps back to the assignment of the next value to name. In both forms, the

else: portion (with else statements) is optional.

7.4. return value

The Return statement causes the currently executing function immediately evaluate to value in the
enclosing context.

> def r():
+ return 1
+ print('hello')
+
> r()
1

In this case, the print statement did not execute because the return happened before it.

7.5. break
The Break statement causes the closest enclosing while or for statement to terminate. Any

optional else: clause associated with the while or for statement is skipped when the break is
executed.

Chapter 7. Control Flow 35

GNU General Public License Version 3 or later 35

> for x in (1,2):
+ if x == 2:
+ break
+ print(x)
+ else:
+ print('else')
+
1

> for x in (1,2):
+ if x == 3:
+ break
+ print(x)
+ else:
+ print('else')
+
1
2
else

In this case, the first example does not print else due to the break statement execution rules. The

second example prints else because the break statement is never executed.

7.6. continue
The continue statement causes the closest enclosing while or for statement to jump back to the

portion of the loop which evaluates the termination condition. In while statements, that is where

the while_value is evaluated. In for statements, that is where the next value in the sequence is
computed.

> vowels = 0
> other = 0
> for a in 'hello, world':
+ if a in 'aeiou':
+ vowels += 1
+ continue
+ other += 1
+
> vowels

36 The Snek Programming Language

36 © 2019 Keith Packard

3
> other
9

The continue statement skips the execution of other += 1, otherwise other would be 12.

7.7. pass
The pass statement is a place-holder that does nothing and can be used any place a statement is
needed when no execution is desired.

> if 1 != 2:
+ pass
+ else:
+ print('equal')
+

This example ends up doing nothing as the condition directs execution through the pass
statement.

Chapter 7. Control Flow 37

GNU General Public License Version 3 or later 37

38 The Snek Programming Language

38 © 2019 Keith Packard

Chapter 8. Other Statements

8.1. import name

The Import statement is ignored and is part of Snek so that Snek programs can be run using
Python.

> import curses

8.2. from name import *
The From statement is ignored and is part of Snek so that Snek programs can be run using
Python.

> from random import *

8.3. global name [, name …]

The Global statement marks the names as non-local; assignment to them will not cause a new
variable to be created.

> g = 0
> def set_local(v):
+ g = v
+
> def set_global(v):
+ global g
+ g = v
+
> set_local(12)
> g
0
> set_global(12)
> g
12
>

Because set_local does not include global g, the assignment to g creates a new local variable,

Chapter 8. Other Statements 39

GNU General Public License Version 3 or later 39

which is then discarded when the function returns. set_global does include the global g
statement, so the assignment to g references the global variable and the change is visible after that
function finishes.

8.4. del location

The Del statement deletes either variables or elements within a List or Dictionary.

8.5. assert value

If value is False, the program will print AssertionError and then stop. Otherwise, the program
will continue executing. This is useful to add checks inside your program to help catch problems
earlier.

40 The Snek Programming Language

40 © 2019 Keith Packard

Chapter 9. Functions
Functions in Snek (as in any language) provide a way to encapsulate a sequence of operations. They
can be used to help document what a program does, to shorten the overall length of a program or
to hide the details of an operation from other parts of the program.

Functions take a list of “positional” parameters, then a list of “named” parameters. Positional
parameters are all required, and are passed in the caller in the same order they appear in the
declaration. Named parameters are optional; they will be set to the provided default value if not
passed by the caller. They can appear in any order in the call. Each of these parameters is assigned
to a variable in a new scope; variables in this new scope will hide global variables and variables
from other functions with the same name. When the function returns, all variables in this new
scope are discarded.

Additional variables in this new scope are created when they are assigned to, unless they are

included in a global statement.

9.1. def
def fname (pos1 [, posn …] [, namen = defaultn …]) : block

A def statement declares (or re-declares) a function. The positional and named parameters are all
visible as local variables while the function is executing.

Here’s an example of a function with two parameters:

> def subtract(a,b):
+ return a - b
+
> subtract(3,2)
1

And here’s a function with one positional parameter and two named parameters:

> def step(value, times=1, plus=0):
+ return value * times + plus
+
> step(12)
12
> step(12, times=2)
24
> step(12, plus=1)
13

Chapter 9. Functions 41

GNU General Public License Version 3 or later 41

> step(12, times=2, plus=1)
25

42 The Snek Programming Language

42 © 2019 Keith Packard

Chapter 10. Standard Built-in Functions
Snek includes a small set of standard built-in functions, but it may be extended with a number of
system-dependent functions as well. This chapter describes the set of builtin functions which are
considered a “standard” part of the Snek language and are provided in all Snek implementations.

10.1. len(value)
Len returns the number of characters for a String or the number of elements in a Tuple, List or
Dictionary

> len('hello, world')
12
> len((1,2,3))
3
> len([1,2,3])
3
> len({ 1:2, 3:4, 5:6, 7:8 })
4

10.2. print(value1 , `value2, …, end='\n')
Print writes all of its positional parameters to the console separated by spaces (' ') followed by the

end named parameter (default: '\n').

> print('hello world', end='.')
hello world.>
> print('hello', 'world')
hello world
>

10.3. sys.stdout.flush()
Flush output to the console, in case there is buffering somewhere.

10.4. ord(string)
Converts the first character in a string to its ASCII value.

Chapter 10. Standard Built-in Functions 43

GNU General Public License Version 3 or later 43

> ord('A')
65

10.5. chr(number)
Converts an ASCII value to a one character string.

> chr(65)
'A'

10.6. abs(number)
Computes the absolute value of its numeric argument. The absolute value of a number is the
number’s distance from 0.

> abs(-2)
2

10.7. sqrt(number)
Compute the square root of its numeric argument.

> sqrt(2)
1.414214

44 The Snek Programming Language

44 © 2019 Keith Packard

Chapter 11. Common System Functions
These functions are system-dependent, but are generally available. If they are available, they will
work as described here.

11.1. exit(value)
Terminate Snek and return value to the operating system. How that value is interpreted depends on
the operating system. On Posix-compatible systems, value should be a number which forms the exit
code for the Snek process with zero indicating success and non-zero indicating failure.

11.2. sleep(seconds)
Pause for the specified amount of time (which can include a fractional part).

> sleep(1)
>

11.3. monotonic()
Return the time (in seconds) since some unspecified reference point in the system history. This time
always increases, even if the system clock is adjusted (hence the name). Because Snek uses single-
precision floating point values for all numbers, the reference point will be close to the starting time
of the Snek system, so values may be quite small.

> monotonic()
6.859814

11.4. seed(seed)
Re-seeds the random number generator with seed. The random number generator will always

generate the same sequence of numbers if started with the same seed.

> seed(monotonic())
>

11.5. random()
Generates a random value greater than or equal to 0 and less than 1.

Chapter 11. Common System Functions 45

GNU General Public License Version 3 or later 45

> randrange(10)
3

11.6. randrange(max)
Generates a random integer between 0 and max-1 inclusive.

> randrange(10)
3

46 The Snek Programming Language

46 © 2019 Keith Packard

Chapter 12. Input Functions
The Snek Input functions provide some operations commonly required when reading data provided
by the user via the serial port.

12.1. float(value)
Converts value into a number. value can be either a string or a number.

> float('10.25')
10.25

12.2. input(prompt)
Prints optional prompt and then waits for the user to enter some text, terminated with a newline.
The text, without the trailing newline, is returned.

> input('--> ')
--> Hi there
'Hi there'

12.2.1. int(value)

Converts value into an integer, rounding towards zero. value can be either a string or a number.

> int('10.75')
10
> int(-10.75)
-10

12.2.2. str(value)

Converts value (which may be any snek value) into a string. This is the same as '%s' % (`value,
)`, but may be more clear in some contexts.

> str(10.75)
'10.75'
> str((1,2,3))
'(1, 2, 3)'

Chapter 12. Input Functions 47

GNU General Public License Version 3 or later 47

> *str('hello world')
'hello world'

48 The Snek Programming Language

48 © 2019 Keith Packard

Chapter 13. Math Functions
The Snek math functions offer the same functions as the Python math package, although at single
precision instead of double precision. These functions are optional, but if any are provided, all are
provided and follow the definitions here.

13.1. Number-theoretic and representation functions

ceil(x)

Return the ceiling of x, the smallest integer greater than or equal to x.

copysign(x,y)

Return a number with the magnitude (absolute value) of x but the sign of y.

fabs(x)

Return the absolute value of x.

factorial(x)

Return the factorial of x.

floor(x)

Return the floor of x, the largest integer less than or equal to x.

fmod(x,y)

Return the modulus of x and y: x - trunc(x/y) * y.

frexp(x)

Returns the normalized fraction and exponent in a tuple (frac, exp). 0.5 ≤ abs(frac) < 1, and x =
frac * pow(2,exp).

fsum(l)

Returns the sum of the numbers in l, which must be a list or tuple.

gcd(x,y)

Return the greatest common divisor of x and y.

isclose(x,y,rel_val=1e-6,abs_val=0.0)

Returns a boolean indicating whether x and y are 'close' together. This is defined as abs(x-y) ≤
max(rel_tol * max(abs(a), abs(b)), abs_tol).

isfinite(x)

Returns True if x is finite else False.

isinf

Returns True if x is infinite else False.

Chapter 13. Math Functions 49

GNU General Public License Version 3 or later 49

isnan

Returns True if x is not a number else False.

ldexp(x,y)

Returns x * pow(2,y).

modf(x)

Returns (x - trunc(x), trunc(x)).

remainder(x,y)

Returns the remainder of x and y: x - round(x/y) * y.

trunc

Returns the truncation of x, the integer closest to x which is no further from zero than x.

round(x)

Returns the integer nearest x, with values midway between two integers rounding away from
zero.

13.2. Power and logarithmic functions

exp(x)

Returns pow(e,x).

expm1(x)

Returns exp(x)-1.

exp2(x)

Returns pow(2,x).

log(x)

Returns the natural logarithm of x.

log1p(x)

Returns log(x+1).

log2(x)

Returns the log base 2 of x.

log10(x)

Returns the log base 10 of x.

pow(x,y)

Returns x raised to the yth power.

50 The Snek Programming Language

50 © 2019 Keith Packard

13.3. Trigonometric functions

acos(x)

Returns the arc cosine of x in the range of 0 ≤ acos(x) ≤ π.

asin(x)

Returns the arc sine of x in the range of -π/2 ≤ asin(x) ≤ π/2.

atan(x)

Returns the arc tangent of x in the range of -π/2 ≤ atan(x) ≤ π/2.

atan2(y,x)

Returns the arc tangent of y/x in the range of -π ≤ atan2(y,x) ≤ π.

cos(x)

Returns the cosine of x.

hypot(x,y)

Returns sqrt(x*x + y*y).

sin(x)

Returns the sine of x.

tan(x)

Returns the tangent of x.

13.4. Angular conversion

degrees(x)

Returns x * 180/π.

radians(x)

Returns x * π/180.

13.5. Hyperbolic functions

acosh(x)

Returns the inverse hyperbolic cosine of x.

asinh(x)

Returns the inverse hyperbolic sine of x.

atanh(x)

Returns the inverse hyperbolic tangent of x.

Chapter 13. Math Functions 51

GNU General Public License Version 3 or later 51

cosh(x)

Returns the hyperbolic cosine of x: (exp(x) + exp(-x)) / 2.

sinh(x)

Returns the hyperbolic sine of x: (exp(x) - exp(-x)) / 2.

tanh(x)

Returns the hyperbolic tangent of x: sinh(x) / cosh(x).

13.6. Special functions

erf(x)

Returns the error function at x.

erfc(x)

Returns the complement of the error function at x. This is 1 - erf(x).

gamma(x)

Returns the gamma function at x.

lgamma(x)

Returns log(gamma(x)).

13.7. Mathematical constants

pi

The mathematical constant π, to available precision.

e

The mathematical constant e, to available precision.

tau

The mathematical constant τ, which is 2π, to available precision.

inf

The floating point value which represents ∞.

nan

The floating point value which represents Not a Number.

52 The Snek Programming Language

52 © 2019 Keith Packard

Chapter 14. GPIO Functions
On embedded devices, Snek has a range of functions designed to make manipulating the GPIO pins
convenient. Snek keeps track of two pins for output and one pin for input. The two output pins are
called Power and Direction. Each output function specifies which pins it operates on. All input and
output values range between 0 and 1. Digital pins use only 0 or 1, analog pins support the full range
of values from 0 to 1.

Input pins can be set so that they read as 0 or 1 when nothing is connected by using pulldown or

pullup. Using pullnone makes the pin “float” to provide accurate analog readings. Digital pins are

to pullup by default, Analog pins are set to pullnone.

Output pins are either on or off. A pin which is on has its value set to the current power for that
pin; changes to the current power for the pin are effective immediately. A pin which is off has its

output set to zero, but Snek remembers the setpower level and will restore the pin to that level
when it is turned on.

14.1. talkto(pin)
Set the current output pins. If pin is a number, this sets both the Power and Direction pins. If pin is a
List or Tuple, then the first element sets the Power pin and the second sets the Direction pin.

14.2. setpower(power)
Sets the power level on the current Power pin to power. If the Power pin is currently on, then this is
effective immediately. Otherwise, Snek remembers the desired power level and will use it when the
pin is turned on. Values less than zero set the power to zero, values greater than one set the power
to one.

14.3. setleft()
Turns the current Direction pin on.

14.4. setright()
Turns the current Direction pin off.

14.5. on()
Turns the current Power pin on.

14.6. off()
Turns the current Power pin off.

Chapter 14. GPIO Functions 53

GNU General Public License Version 3 or later 53

14.7. onfor(seconds)
Turns the current Power pin on, delays for seconds and then turns the current Power pin off.

14.8. read(pin)
Returns the value of pin. If this is an analog pin, then read returns a value from 0 to 1 (inclusive).

If this a digital pin, then read returns either 0 or 1.

14.9. pullnone(pin)
Removes any pullup or pulldown settings for pin, leaving the value floating when nothing is
connected. Use this setting on analog pins to get continuous values rather than just 0 or 1. This is
the default setting for Analog pins.

14.10. pullup(pin)
Assigns a pullup setting for pin, so that the read will return 1 when nothing is connected. When in
this mode, analog pins will return only 0 or 1. This is the default setting for Digital pins.

14.11. pulldown(pin)
Assigns a pullup setting for pin, so that the read will return 0 when nothing is connected. When in
this mode, analog pins will return only 0 or 1. Note that some boards do not support this mode, in
which case this function will not be available.

14.12. stopall()
Turns all pins off.

14.13. neopixel(pixels)
Programs either a set of neopixel devices connected to the current Power pin (when Power and
Direction are the same) or a set of APA102 devices connected to the current Power (used for
APA102 Data) and Direction (used for APA102 Clock) pins (when Power and Direction are different).
pixels is either a list/tuple of three numbers, or a list/tuple, each element of which is a list/tuple of
three numbers ranging from 0 to 1 for the desired red, green and blue intensity of the target
neopixel.

> talkto(NEOPIXEL)
> neopixel((0, 0.5, 0))

This example programs a single NeoPixel device, setting it to half-intensity green.

54 The Snek Programming Language

54 © 2019 Keith Packard

> talkto(NEOPIXEL)
> pixels = [(0.33, 0, 0), (0, 0.66, 0), (0, 0, 1)]
> neopixel(pixels)

This example programs three NeoPixel devices, the first one is set to one third intensity red, the
second to two thirds intensity green and the last to full intensity blue. If there are additional
neopixel devices connected, they will not be modified. If there are fewer devices connected than the
data provided, the extra values will be ignored.

14.14. tone(frequency)
On devices with an audio output, this sets the output of that pin to a sine wave at frequency Hertz.

The amplitude is controlled by the power setting for the pin and whether the pin is turned on.

> talkto(A0)
> on()
> tone(tone.A)

14.15. tonefor(frequency , seconds)
Sets the audio tone to frequency, turns the current Power pin on, delays for seconds and then turns
the current Power pin off.

> talkto(A0)
> tonefor(tone.C, 1)

14.16. Musical note constants

These provide frequencies commonly used in music, starting with middle C:

Table 1. Musical note constants

Name Note Frequency

tone.C C 261.6255653

tone.Csharp C♯ 277.1826310

tone.Dflat D♭ 277.1826310

tone.D D 293.6647679

tone.Dsharp D♯ 311.1269837

Chapter 14. GPIO Functions 55

GNU General Public License Version 3 or later 55

Name Note Frequency

tone.Eflat E♭ 311.1269837

tone.E E 329.6275569

tone.F F 349.2282314

tone.Fsharp F♯ 369.9944227

tone.Gflat G♭ 369.9944227

tone.G G 391.9954360

tone.Gsharp G♯ 415.3046976

tone.Aflat A♭ 415.3046976

tone.A A 440.0000000

tone.Asharp A♯ 466.1637615

tone.Bflat B♭ 466.1637615

tone.B B 493.8833013

56 The Snek Programming Language

56 © 2019 Keith Packard

Chapter 15. EEPROM built-in functions
Snek on embedded devices may include persistent storage for source code. This code is read at
boot time, allowing boards with Snek loaded to run stand-alone. These functions are used by
Snekde to get and put programs to the device.

15.1. eeprom.write()
Reads characters from the console and writes them to eeprom until a ^D character is read.

15.2. eeprom.show()
Dumps the current contents of eeprom out to the console. If a parameter is passed to this function

then a ^B character is sent before the text, and a ^C is sent afterwards. Snekde uses this feature to
accurately capture the program text when the Get command is invoked.

15.3. eeprom.load()
Re-parses the current eeprom contents, just as Snek does at boot time.

15.4. eeprom.erase()
Erase the eeprom.

15.5. reset()
Restart the Snek system, erasing all RAM contents. As part of the restart process, Snek will re-read
any source code stored in eeprom.

Chapter 15. EEPROM built-in functions 57

GNU General Public License Version 3 or later 57

58 The Snek Programming Language

58 © 2019 Keith Packard

Chapter 16. Temperature Conversion
Function
This function is included in devices that have a built-in temperature sensor.

16.1. temperature(sensorvalue)
The conversion function is pre-set with the parameters needed to convert from the temperature
sensor value to degrees Celsius.

Chapter 16. Temperature Conversion Function 59

GNU General Public License Version 3 or later 59

60 The Snek Programming Language

60 © 2019 Keith Packard

Chapter 17. Curses built-in functions
Curses provides a simple mechanism for displaying text on the console. The API is designed to be
reasonably compatible with the Python curses module, although it is much less flexible. Snek only
supports ANSI terminals, and doesn’t have any idea what the dimensions of the console are. Not all
Snek implementations provide the curses functions.

17.1. curses.initscr()
Puts the console into “visual” mode. Disables echo. Makes stdscr.getch() stop waiting for
newline.

17.2. curses.endwin()
Resets the console back to “normal” mode. Enables echo. Makes stdscr.getch() wait for
newlines.

17.3. curses.noecho(), curses.echo(),
curses.cbreak(), curses.nocbreak()
All four of these functions are no-ops and are part of the API solely to make it more compatible with
Python curses.

17.4. stdscr.nodelay(nodelay)
If nodelay is True, then stdscr.getch() will return -1 if there is no character waiting. If nodelay is

False, the stdscr.getch() will block waiting for a character to return.

17.5. stdscr.erase()
Erase the screen.

17.6. stdscr.addstr(row , column , string)
Displays string at row, column. Row 0 is the top row of the screen. Column 0 is the left column. The
cursor is left at the end of the string.

17.7. stdscr.move(row , column)
Moves the cursor to row, column without displaying anything there.

Chapter 17. Curses built-in functions 61

GNU General Public License Version 3 or later 61

17.8. stdscr.refresh()
Flushes any pending screen updates.

17.9. stdscr.getch()
Reads a character from the console input. Returns a number indicating the character read, which

can be converted to a string using chr(c). If stdscr.nodelay(nodelay) was most recently

called with nodelay = True, then stdscr.getch() will immediately return -1 if no characters are
pending.

62 The Snek Programming Language

62 © 2019 Keith Packard

Chapter 18. Snek Development Environment
The Snek Development Environment, Snekde, is a Python program which runs on Linux, Mac OS X
and Windows to work with small devices running Snek, such as the Duemilanove and Metro M0
Express boards.

18.1. Starting Snekde

On Windows and Linux, launch snekde from your application menu. On Mac OS X, Snekde is
installed along with the other Snek files in the Snek folder inside your personal Applications folder,
which is inside your Home folder. Double click on the Snekde icon to launch.

Snekde runs inside a console or terminal window and doesn’t use the mouse at all, instead it is
controlled entirely using keyboard commands.

Snekde splits the window into two panes. The upper pane is the ”editor pane” that holds your Snek
program. The lower pane is the “console pane” and handles communications with the Snek device.

18.2. Basic Navigation

Across the top of the window you’ll see a list of commands which are bound to function keys. Those
are there to remind you how to control Snekde.

If your function keys don’t work, you can use the Esc key along with a number key instead. Press
and release the Esc key, then press and release a number key. For instance, to invoke the F1
command, press and release Esc, then press and release '1'.

Between the two panes is a separator line. At the end of that line is the name of the currently

connected Snek device, such as /dev/ttyUSB0 on Linux or COM12 on Windows. If there isn’t a
device connected, it will say “<no device>”.

The cursor shows which pane you are currently working with. To switch between the editor and
console panes, use the F7 key. If you don’t have one of these, or if it doesn’t work, you can also use

Esc-7 or Ctrl-o (press and hold the Ctrl key, press the o key and then release both).

You can move around the current pane with the arrow, home, end and page-up/page-down keys.
Cut/paste/copy use Ctrl-x, Ctrl-v and Ctrl-c or Esc-x, Esc-v and Esc-c respectively. To mark a section
of text for a Cut or Paste command, press Esc-space or Ctrl-space then use regular movement
commands. The selected region of text will be highlighted.

18.3. Connecting to a Device

To connect to a device running Snek, press the F1 key (usually right next to the ESC key on your
keyboard). That will display a dialog box in the middle of the screen listing all of the devices which
might be running Snek (if you’ve got a serial modem or other similar device, that will also be listed
here). Select the target device and press the ENTER key.

Don’t expect anything to happen in the lower pane just yet; you’ll have to get the attention of the

Chapter 18. Snek Development Environment 63

GNU General Public License Version 3 or later 63

device first.

Switch to the Console pane (F7) and press Ctrl-c to interrupt any currently running Snek program.
You should see the Snek prompt (“> ”) appear in the pane.

18.4. Getting and Putting Programs to a Device

The Snek device holds one program in non-volatile memory. When it starts up, it will run that
program automatically. This lets you set up the device so that it will perform some action when it is
turned on without needing to communicate with it first.

The Get command fetches the current program from the connected device and puts it into the
Editor pane. The Put command writes the Editor pane contents into non-volatile memory in the
target device and then restarts the target device to have it reload the program. Both of these
commands will interrupt any running Snek program before doing any work.

18.5. Loading and Saving Programs to the Host

You can also save and load programs to the host file system. Both of these commands prompt for a
filename using a file dialog. At the top of the dialog is the filename to use. The rest of the dialog
contains directories and files within the same directory as the filename. Directories are enclosed in

[].

Using the arrow keys replaces the filename with the highlighted name. You can also edit the
filename using backspace and entering a new name.

Select a filename by pressing enter. If the name is a directory, then the contents of that directory
will replace the list of directories and files in the dialog. If the name is a file, then that will be used
for the load or save operation.

To quit from the dialog and skip loading or saving a file, press Escape.

64 The Snek Programming Language

64 © 2019 Keith Packard

Appendix A: Snek on snekboard
Snek for the snekboard includes the Common System, Math, Input, GPIO (including the neopixel
function) and EEPROM functions. Snek for the snekboard provides pre-defined variables for the
eight analog I/O pins as well as the four 9V motor controllers:

A1-A8

Analog input and output pins. When used as output pins, you can use setpower to control the
drive power. When used as input pins, Snek will return a value from 0-1 indicating the ratio of
the pin voltage to 3.3V. By default, when used as input pins, Snek does not apply either a pull-up
or pull-down resistor to the pin so that a disconnected pin will read an indeterminate value.

Change this using pullnone, pullup or pulldown functions.

M1-M4

Bi-directional 9V DC motor control, 2.5A max current. These are tuples with two values each.

M1[0], M2[0], M3[0] and M4[0] are the power pins. M1[1], M2[1], M3[1] and M4[1] are the
direction pins. Note that there’s a bit of firmware behind these pins that keeps the outputs from
changing power too rapidly.

NEOPIXEL

The two APA102 devices on the board, which can be driven using the neopixel function.

Snekboard includes a boot loader which presents as a USB mass storage device with a FAT file
system. You can get the board into this mode by connecting the board to your computer over USB
and then pressing the blue reset button twice in quick succession.

Then, find the snek-board-1.13.uf2 file included in the Snek package for your machine and
copy it to the snekboard file system.

Appendix A: Snek on snekboard 65

GNU General Public License Version 3 or later 65

Appendix B: Snek on Arduino Duemilanove,
LilyPad, Nano and Uno
These boards are all based on the original Arduino ATMega 328 processor. There are two versions
of Snek for these boards: the regular version and a “big” version. The regular version co-exists with
the Optiboot bootloader which makes re-flashing with new versions of Snek convenient. The big
version overwrites the boot loader to provide additional functionality.

Snek for these boards include the Common System, EEPROM, and GPIO functions. The “big”

versions add the Input functions. They do not include the Math functions, nor the pulldown
function. Snek for these boards provides pre-defined variables for all of the GPIO pins:

Snek for the LilyPad adds the 'tone' and 'tonefor' builtins, which send an audio tone to pin D5. To
make space for this, support for Dictionaries was removed.

D0 - D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone or pullup
functions.

A0 - A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 5V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone or pullup functions.

B.1. Installing Optiboot on ATMega 328 boards

Snek nearly fills the ATMega 328P flash, leaving space only for the smaller optiboot loader. This
loader is not usually installed on the Duemilanove or Nano, so you’ll need to install it by hand using
a programming puck, such as the USBTiny device.

Use the Arduino IDE to install the Optiboot boot loader following instructions found on the
Optiboot web site [https://github.com/Optiboot/optiboot].

B.2. Installing Snek on ATMega 328 boards

To install the regular version, once your board is ready to install snek, you can use avrdude to do
that with Optiboot. On Linux, you can use snek-duemilanove-install (for Duemilanove and Nano),
snek-uno-install (for Uno), or snek-lilypad-install (for LilyPad).

$ snek-duemilanove-install

or

66 The Snek Programming Language

66 © 2019 Keith Packard

https://github.com/Optiboot/optiboot

$ snek-lilypad-install

or

$ snek-uno-install

On other hosts, you’ll need to run 'avrdude' manually. For Duemilanove or Nano boards:

$ avrdude -pm328p -carduino -PCOM1 -b115200 -D -U flash:w:snek-
duemilanove-1.13.hex:i

For Uno boards:

$ avrdude -pm328p -carduino -PCOM1 -b115200 -D -U flash:w:snek-uno-
1.13.hex:i

For LilyPad boards:

$ avrdude -pm328p -carduino -PCOM1 -b57600 -D -U flash:w:snek-lilypad-
1.13.hex:i

Replace 'COM1' with the name of the serial port on your computer.

To install the “big” version, you’ll need to use a programming device, such as a usbtiny from
Adafruit. Once connected, on Linux you can use snek-duemilanove-big-install (for Duemilanove or
Nano), snek-lilypad-big-install (for LilyPad), or snek-uno-big-install (for Uno):

$ snek-duemilanove-big-install

or

$ snek-lilypad-install-big

or

Appendix B: Snek on Arduino Duemilanove, LilyPad, Nano and Uno 67

GNU General Public License Version 3 or later 67

$ snek-uno-big-install

On other hosts, you’ll need to run 'avrdude' manually:

$ avrdude -V -c usbtiny -p m328p -u -U -U hfuse:w:0xd1:m
$ avrdude -c usbtiny -p m328p -U flash:w:snek-duemilanove-big-
1.13.hex:i

or

$ avrdude -V -c usbtiny -p m328p -u -U -U hfuse:w:0xd1:m
$ avrdude -c usbtiny -p m328p -U flash:w:snek-lilypad-big-1.13.hex:i

or

$ avrdude -V -c usbtiny -p m328p -u -U -U hfuse:w:0xd1:m
$ avrdude -c usbtiny -p m328p -U flash:w:snek-uno-big-1.13.hex:i

68 The Snek Programming Language

68 © 2019 Keith Packard

Appendix C: Snek on Adafruit ItsyBitsy and
the Crowd Supply µduino
Snek for the ItsyBitsy and µduino includes the Common System, GPIO (without the neopixel
function), and EEPROM functions. Snek for the itsybitsy provides pre-defined variables for all of the
the GPIO pins:

D0 - D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or

pulldown functions.

A0 - A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to either 3.3V (on the 3v device) or 5V (on the 5V device). By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using

pullnone, pullup or pulldown functions.

MISO, MOSI, SCK

Additional digital input and output pins. These work just like D0-D13. These are not present on
the µduino board.

Snek fills the ATMega 32u4 flash completely leaving no space for the usual USB boot loader, so
installing Snek requires a programming puck, such as the USBTiny device.

On Linux, the Snek installation includes shell scripts, snek-itsybitsy-install and snek-uduino-install
which install the binary using 'avrdude'. Read the snek-itsybitsy-install or snek-uduino-install
manual (also included in the installation) for more information.

The µduino programming wires are only available while the device is still connected to the carrier
board. Normally the µduino has been broken off of that during manufacturing.

On other hosts, you’ll need to install 'avrdude'. Once you’ve done that, there are two steps to
getting Snek installed on the device.

1. Set the 'fuses' on the target device. This sets the start address back to the beginning of memory
instead of the boot loader, and then has the device leave the eeprom contents alone when re-
flashing. That means you won’t lose your Snek program when updating the firmware.

$ avrdude -F -V -c usbtiny -p m32u4 -U:m -U hfuse:w:0x99:m

2. Install the Snek binary. Pick the version for your board as that also sets the right clock speed.
For 5v boards, install the 5v binary:

Appendix C: Snek on Adafruit ItsyBitsy and the Crowd Supply µduino 69

GNU General Public License Version 3 or later 69

$ avrdude -F -V -c usbtiny -p m32u4 -U flash:w:snek-itsybitsy5v-
1.13.hex

for 3v boards, use the 3v binary.

$ avrdude -F -V -c usbtiny -p m32u4 -U flash:w:snek-itsybitsy3v-
1.13.hex

for µduino boards, use the µduino binary.

$ avrdude -F -V -c usbtiny -p m32u4 -U flash:w:snek-uduino-1.13.hex

70 The Snek Programming Language

70 © 2019 Keith Packard

Appendix D: Snek on Adafruit ItsyBitsy M0
Snek for the Adafruit ItsyBitsy includes the Common System, Input, Math, GPIO (including the

neopixel function), and EEPROM functions. Snek for the itsybitsy m0 provides pre-defined
variables for all of the the GPIO pins:

D0 - D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or

pulldown functions. D5 on the ItsyBitsy M0 is hooked to a 3.3V to 5V converter so that it can
drive 5V devices. This means it cannot be used as an input pin.

A0

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using

pullnone, pullup or pulldown functions.

A1 - A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

SDA, SCL, MISO, MOSI, SCK

Additional digital input and output pins. These work just like D0-D13.

NEOPIXEL

The APA102 device on the board, which can be driven using the neopixel function.

The Adafruit ItsyBitsy M0 board includes a boot loader which presents as a USB mass storage
device with a FAT file system. You can get the board into this mode by connecting the board to your
computer over USB and then pressing the reset button twice in succession. In boot loader mode,
the red LED on D13 will pulse rapidly for a few seconds, then more slowly. At that point, the APA102
device will turn green.

Once the ItsyBitsy M0 is in boot loader mode and has been mounted, find the snek-
itsybitsym0-1.13.uf2 file included in the Snek package for your machine and copy it to the
ItsyBitsy M0 file system.

Appendix D: Snek on Adafruit ItsyBitsy M0 71

GNU General Public License Version 3 or later 71

Appendix E: Snek on Arduino Mega
Snek for the Mega includes the Common System, EEPROM, Input, GPIO (not including the

pulldown function) and math functions. Snek for the Mega provides pre-defined variables for all of
the GPIO pins:

D0-D53

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone or pullup
functions.

A0-A15

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 5V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone or pullup functions.

Snek fits comfortably in the ATmega2560 flash, leaving plenty of space for the serial boot loader, so
re-installing Snek can be done over USB. However, the default firmware loaded on the ATMega16u2
that acts as USB to serial converter doesn’t do any XON/XOFF flow control and so that should be
replaced before installing Snek as Snekde will not get or put source code successfully without it.

On Linux, the Snek installation includes a shell script, snek-mega-install, to install the binary using
'avrdude'. Read the snek-mega-install manual (also included in the installation) for more
information.

On other hosts, you’ll need to install 'avrdude'. Once you’ve done that, you can use it to get Snek
installed on the device. Because the EEPROM fuse bit can’t be set this way, when you do this any
Snek program stored on the device will be erased. Find out what port the Mega is connected to, use

that as the value for <port> and then run 'avrdude' as follows:

$ avrdude -patmega2560 -cwiring -P<port> -b115200 -D -U flash:w:snek-
mega-1.13.hex:i

72 The Snek Programming Language

72 © 2019 Keith Packard

Appendix F: Snek on Arduino Nano Every
Snek for the Nano Every includes the Common System, EEPROM, Input, Tone, GPIO (not including

the pulldown function) and math functions (except for hyperbolic trig, error, and gamma
functions). Snek for the Nano Every provides pre-defined variables for all of the GPIO pins:

D0-D13, LED

Digital input and output pins. LED is another name for D13. By default, when used as input pins,
Snek applies a pull-up resistor to the pin so that a disconnected pin will read as 1. Change this

using pullnone or pullup functions.

A0-A7

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 5V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone or pullup functions.

Snek fits comfortably in the ATmega4809 flash, which it shares with the snek application. The Nano
Every doesn’t need a boot loader, so re-installing Snek can be done over USB.

On Linux, the Snek installation includes a shell script, snek-nano-every-install, to install the binary
using 'avrdude'. Read the snek-nano-every-install manual (also included in the installation) for more
information.

On other hosts, you’ll need to install 'avrdude'. Once you’ve done that, you can use it to get Snek
installed on the device. Because the Snek application is stored in flash along with the Snek
interpreter, when you do this any Snek program stored on the device will be erased. Find out what

port the Nano Every is connected to, use that as the value for <port> and then run 'avrdude' as
follows:

$ avrdude -patmega4809 -cjtag2updi -P<port> -b115200 -Ufuse2:w:0x02:m
-Ufuse5:w:0xC9:m -Ufuse8:w:0xb0:m -Ufuse7:w:0xb0:m -U flash:w:snek-
mega-1.13.hex:i

Appendix F: Snek on Arduino Nano Every 73

GNU General Public License Version 3 or later 73

Appendix G: Snek on Metro M0 Express
Snek for the Metro M0 Express includes the Common System, Input, Math, GPIO (including the

neopixel function), and EEPROM functions. Snek for the metro m0 provides pre-defined variables
for all of the GPIO pins:

D0 - D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or

pulldown functions.

A0

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using

pullnone, pullup or pulldown functions.

A1 - A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

SDA, SCL

Additional Digital input and output pins. These work just like D0-D13.

NEOPIXEL

The NeoPixel device installed on the board.

The Adafruit Metro M0 Express board includes a boot loader which presents as a USB mass storage
device with a FAT file system. You can get the board into this mode by connecting the board to your
computer over USB and then pressing the reset button twice in quick succession.

Then, find the snek-metrom0-1.13.uf2 file included in the Snek package for your machine and
copy it to the Metro M0 file system.

74 The Snek Programming Language

74 © 2019 Keith Packard

Appendix H: Snek on Feather M0 Express
Snek for the Feather M0 Express includes the Common System, Input, Math, GPIO (including the

neopixel function), and EEPROM functions. Snek for the feather provides pre-defined variables for
all of the GPIO pins:

D0 - D13

Digital input and output pins. By default, when used as input pins, Snek applies a pull-up resistor

to the pin so that a disconnected pin will read as 1. Change this using pullnone, pullup or

pulldown functions.

A0

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using

pullnone, pullup or pulldown functions.

A1 - A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

SDA, SCL, SCK, MOSI, MISO

Additional Digital input and output pins. These work just like D0-D13.

NEOPIXEL

The NeoPixel device installed on the board, which is connected to D8.

RX, TX

RX is D0, TX is D1.

The Adafruit Feather M0 Express board includes a boot loader which presents as a USB mass
storage device with a FAT file system. You can get the board into this mode by connecting the board
to your computer over USB and then pressing the reset button twice in quick succession.

Then, find the snek-feather-1.13.uf2 file included in the Snek package for your machine and
copy it to the Feather M0 file system.

Appendix H: Snek on Feather M0 Express 75

GNU General Public License Version 3 or later 75

Appendix I: Snek on Adafruit Crickit
Snek for the Crickit includes the Common System, Input, Math, GPIO (including the neopixel
function), and EEPROM functions. Snek for the Crickit provides names for all of the GPIO pins:

DRIVE1 - DRIVE4

High current “Darlington” 500mA drive outputs.

MOTOR1, MOTOR2

Bi-directional DC motor control, 1A max current. These are tuples with two values each.

MOTOR1[0] and MOTOR2[0] are the power pins. MOTOR1[1] and MOTOR2[1] are the direction
pins. Note that there’s a bit of firmware behind these pins as the TI DRV8833 chip has a slightly
funky control mechanism.

SERVO1 - SERVO4

Digital pins with PWM output

CAP1 - CAP4

Digital pins labeled “Capacitive Touch” on the Crickit board.

SIGNAL1

The first Signal pin. This provides analog input and output. This pin has a digital-to-analog
converter (DAC).

SIGNAL2 - SIGNAL8

The Signal pins. These provide digital output and analog input. SIGNAL5 - SIGNAL8 also provide
PWM output

NEOPIXEL

The single NeoPixel device installed on the board.

NEOPIXEL1

The external NeoPixel connector.

The Adafruit Crickit board includes a boot loader which presents as a USB mass storage device with
a FAT file system. You can get the board into this mode by connecting the board to your computer
over USB and then pressing the reset button twice in quick succession.

Then, find the snek-crickit-1.13.uf2 file included in the Snek package for your machine and
copy it to the Crickit file system.

76 The Snek Programming Language

76 © 2019 Keith Packard

Appendix J: Snek on Adafruit Circuit
Playground Express
Snek for the Circuit Playground Express includes the Common System, Input, Math, GPIO (including

the neopixel, tone and tonefor functions), Temperature and EEPROM functions. Snek for the
Playground provides names for all of the external connections as well as the built-in devices:

A0

Analog input and output connection. This pin has a digital-to-analog converter (DAC) and can be

used with the tone and tonefor functions. When used as inputs, Snek will return a value from
0-1 indicating the ratio of the voltage to 3.3V. By default, when used as inputs, Snek does not
apply either a pull-up or pull-down resistor so that a disconnected input will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

A1 - A7

Analog input and Digital output connections. When used as inputs, Snek will return a value from
0-1 indicating the ratio of the voltage to 3.3V. By default, when used as inputs, Snek does not
apply either a pull-up or pull-down resistor so that a disconnected input will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

A8 or LIGHT

Internal ambient light sensor. Returns a value indicating how much light is shining on the
sensor.

A9 or TEMP

Internal temperature sensor. Use the builtin temperature function to convert values read from
this pin to degrees Celsius.

D4 or BUTTONA

Connected to the momentary button labeled 'A'. 0 if not pressed, 1 if pressed.

D5 or BUTTONB

Connected to the momentary button labeled 'B'. 0 if not pressed, 1 if pressed.

D7 or SWITCH

Connected to the slide switch. 0 if slid right (towards the microphone), 1 if slid left (towards the
speaker).

D13 or LED

The red LED near the USB connector.

D8 or NEOPIXEL

The string of 10 NeoPixel devices on the board.

The Adafruit Circuit Playground Express board includes a boot loader which presents as a USB
mass storage device with a FAT file system. You can get the board into this mode by connecting the
board to your computer over USB, sliding the switch to the right (towards the microphone) and

Appendix J: Snek on Adafruit Circuit Playground Express 77

GNU General Public License Version 3 or later 77

then pressing the reset button twice in quick succession.

Then, find the snek-playground-1.13.uf2 file included in the Snek package for your machine
and copy it to the Circuit Playground Express file system.

78 The Snek Programming Language

78 © 2019 Keith Packard

Appendix K: Snek on Arduino SA Nano 33 IoT
Snek for the Nano 33 IoT includes the Common System, Input, Math, GPIO, and EEPROM functions.
Snek for the Nano 33 IoT provides names for all of the GPIO pins:

D0 - D12

Digital outputs By default, when used as input pins, Snek does not apply either a pull-up or pull-
down resistor to the pin so that a disconnected pin will read an indeterminate value. Change this

using pullnone, pullup or pulldown functions.

D13 or LED

The yellow LED near the USB connector.

A0

Analog input and output pin. This pin has a digital-to-analog converter (DAC). When used as
input pins, Snek will return a value from 0-1 indicating the ratio of the pin voltage to 3.3V. By
default, when used as input pins, Snek does not apply either a pull-up or pull-down resistor to
the pin so that a disconnected pin will read an indeterminate value. Change this using

pullnone, pullup or pulldown functions.

A1-A5

Analog input and Digital output pins. When used as input pins, Snek will return a value from 0-1
indicating the ratio of the pin voltage to 3.3V. By default, when used as input pins, Snek does not
apply either a pull-up or pull-down resistor to the pin so that a disconnected pin will read an

indeterminate value. Change this using pullnone, pullup or pulldown functions.

The Arduino SA Nano 33 IoT board includes a boot loader which works with the Arduino IDE. Snek
includes a replacement boot loader which presents as a USB mass storage device with a FAT file
system. To install this boot loader, start the Arduino IDE, find the update-bootloader-nano33iot.ino
project included in the Snek package for your machine and load it into the Arduino IDE. Then
compile and download that to the Nano 33 IoT board. That will replace the boot loader and restart
the board, at which point it should present a file system. For future updates, you can get the board
back into this mode by connecting the board to your computer over USB and then pressing the
reset button twice in quick succession.

Once the board is showing a file system on your computer, find the snek-nano33iot-1.13.uf2
file included in the Snek package for your machine and copy it to the file system.

Appendix K: Snek on Arduino SA Nano 33 IoT 79

GNU General Public License Version 3 or later 79

Appendix L: Snek on Lego EV3
Snek for Lego EV3 runs under ev3dev [https://www.ev3dev.org/].

The following sensors are supported:

• Lego EV3 Touch Sensor [https://education.lego.com/en-us/products/ev3-touch-sensor/45507],

True and False are reported when read().

• Lego EV3 Color Sensor [https://education.lego.com/en-us/products/ev3-color-sensor/45506], named "light
sensor" in Snek,

The sensor can be configured by calling light_reflected, light_ambient, light_color
and light_rgb functions.

◦ In light_reflected mode the sensor returns intensity of reflected LED light, range 0..1.
This is the default mode.

◦ In light_ambient mode the sensor returns intensity of ambient light, range 0..1.

◦ In light_color mode the sensor returns a detected color name, one of 'black', 'blue',

'green', 'yellow', 'white', 'brown', or None if no object is detected.

◦ In light_rgb mode the sensor returns RGB color tuple of 3 elements, each component in
range 0..1.

• Lego EV3 Ultrasonic Sensor [https://education.lego.com/en-us/products/ev3-ultrasonic-sensor/45504],
named "distance sensor" in Snek.

A distance to the object in front of sensor in centimeters is returned, or Inf if no object is
detected.

Sensor ports are named 1-4, matching the markings on EV3 body.

Sensors are detected automatically, so they can be plugged/unplugged while Snek is running.

The following motors are supported:

• Lego EV3 Large Servo Motor [https://www.lego.com/en-us/product/ev3-large-servo-motor-45502]

• Lego EV3 Medium Servo Motor [https://www.lego.com/en-us/product/ev3-medium-servo-motor-45503]

Servo motors have two-way communication with the host, so current speed (either from
application of power or from manual rotation) and current position of the motor can be queried:

• read reads the current speed of the motor (-3 to 3 rotations per second),

• position reads the current position of the motor (rotations from reset).

Servo motors remember the initial position after reset, so the position can become arbitrarily big.

Current motor to control is selected by using talkto with port names 'A' to 'D'.

80 The Snek Programming Language

80 © 2019 Keith Packard

https://www.ev3dev.org/
https://education.lego.com/en-us/products/ev3-touch-sensor/45507
https://education.lego.com/en-us/products/ev3-color-sensor/45506
https://education.lego.com/en-us/products/ev3-ultrasonic-sensor/45504
https://www.lego.com/en-us/product/ev3-large-servo-motor-45502
https://www.lego.com/en-us/product/ev3-medium-servo-motor-45503

The following operations are available on the selected motor:

• setpower sets the motor speed, from -3 to 3 rotations per second.

• setleft makes the motor rotate counterclockwise when positive speed is requested.

• setright makes the motor rotate clockwise when positive speed is requested.

• on starts the motor

• off stops the motor

• onfor starts the motor for specified amount of seconds. This function returns immediately.

• setposition starts the motor it running until it reaches the given position (measured in
rotations). This function returns immediately.

• ramp_up sets the ramp-up time. The argument specifies duration in seconds from 0 to
maximum speed. If a speed smaller than maximum is requested, ramp-up time is shortened
proportionally.

• ramp_down sets the ramp-down time in the same manner.

Servo motors have several modes for stopping, select them using the following functions:

• coast. Once the desired position is reached, remove the power. The motor coasts to stop. This
is the default mode.

• brake. Once the desired position is reached, remove the power and apply passive load on the
motor. Motor stops quicker than when coasting.

• hold. Once the desired position is reached, actively hold the position by turning the motor to
the desired position.

To run Snek on EV3:

• boot ev3dev [https://www.ev3dev.org/docs/getting-started/],

• connect it to the host [https://www.ev3dev.org/docs/tutorials/],

• Copy snek-ev3-1.13 to EV3 via scp.

• SSH to EV3 [https://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/] and run ./snek-ev3-
1.13.

Appendix L: Snek on Lego EV3 81

GNU General Public License Version 3 or later 81

https://www.ev3dev.org/docs/getting-started/
https://www.ev3dev.org/docs/tutorials/
https://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/

82 The Snek Programming Language

82 © 2019 Keith Packard

Index
@

%, 25, 28
%=, 31
&, 25
&=, 31
(), 27
(value, …), 27
*, 25
**, 25
**=, 31
*=, 31
+, 25-26
+=, 31
-, 25
/, 25
//, 25
//=, 31
/=, 31
<<, 25
<<=, 31
=, 31
>>, 26
>>=, 31
[], 26
[value, …], 26
^, 25
^=, 31
|, 25
|=, 31
~, 26
–, 26
–=, 31
∞, 52

A

abs, 44
acos, 51
acosh, 51
and, 26
Arduino, 66, 74-75
Arduino Mega, 72
Arduino Nano Every, 73
asin, 51
asinh, 51
assignment, 31
atan, 51
atan2, 51

atanh, 51

B

Boolean, 23
break, 33, 35

C

ceil, 49
chr, 44
continue, 36
copysign, 49
cos, 51
cosh, 52
Crickit, 76
curses, 61
curses.cbreak, 61
curses.echo, 61
curses.endwin, 61
curses.initscr, 61
curses.nocbreak, 61
curses.noecho, 61

D

def, 6, 41
degrees, 51
del, 40
Dictionary, 11, 22-23
Duemilanove, 66

E

e, 52
eeprom, 57
eeprom.erase, 57
eeprom.load, 57
eeprom.show, 57
eeprom.write, 57
elif, 33
else, 33-34
erf, 52
erfc, 52
exit, 45
exp, 50
exp2, 50
expm1, 50

F

fabs, 49

Index 83

GNU General Public License Version 3 or later 83

factorial, 49
Feather M0 Express, 75
floor, 49
fmod, 49
for, 8, 10, 34
frexp, 49
from, 39
fsum, 49
Function, 23

G

gamma, 52
gcd, 49
global, 39
GPIO, 14, 53

H

hypot, 51

I

if, 13, 33
import, 39
in, 8, 10, 26
inf, 52
is, 26
is not, 26
isclose, 49
isfinite, 49
isinf, 49
isnan, 50
ItsyBitsy, 69
ItsyBitsy M0, 71

K

Keyword, 20

L

ldexp, 50
len, 43
lgamma, 52
LilyPad, 66
List, 9, 23
log, 50
log10, 50
log1p, 50
log2, 50

M

Metro M0 Express, 74

modf, 50
monotonic, 45

N

Name, 19
NaN, 52
nan, 52
Nano, 66
Nano 33 IoT, 79
neopixel, 54
not, 26
not in, 26
Number, 19, 23

O

off, 15, 53
on, 14, 53
onfor, 15, 54
or, 26
ord, 43

P

pass, 37
pi, 52
Playground, 78
pow, 50
print, 6, 43

R

radians, 51
random, 45
randrange, 46
range, 8
read, 15, 54
remainder, 50
reset, 57
return, 7, 35
round, 50

S

seed, 45
setleft, 15, 53
setpower, 15, 53
setright, 15, 53
sin, 51
sinh, 52
sleep, 14, 45
slice, 27
snekboard, 65
snekde, 63

84 The Snek Programming Language

84 © 2019 Keith Packard

sqrt, 44
stdscr.addstr, 61
stdscr.erase, 61
stdscr.getch, 62
stdscr.move, 61
stdscr.nodelay, 61
stdscr.refresh, 62
stopall, 54
String, 21, 23
string interpolation, 28
sys.stdout.flush, 43

T

talkto, 14, 53
tan, 51
tanh, 52
tau, 52
tone, 55
tonefor, 55
trunc, 50
Tuple, 9, 23

U

Uno, 66

W

while, 12, 33

Μ

µduino, 69

Π

π, 52

Τ

τ, 52

Index 85

GNU General Public License Version 3 or later 85

	The Snek Programming Language: A Python-inspired Embedded Computing Language
	Table of Contents
	License
	Acknowledgments
	Chapter 1. History and Motivations
	1.1. Arduino in the Lego Program
	1.2. A New Language
	1.3. Introducing Snek

	Chapter 2. A Gentle Snek Tutorial
	2.1. Hello World
	2.2. Variables
	2.3. Functions
	2.4. Simple Arithmetic
	2.5. Loops, Ranges and Printing Two Values
	2.6. Lists and Tuples
	2.7. Dictionaries
	2.8. While
	2.9. If
	2.10. Controlling GPIOs

	Snek Reference Manual
	Chapter 3. Lexical Structure
	3.1. Numbers
	3.2. Names
	3.3. Keywords
	3.4. Punctuation
	3.5. White Space (Spaces and Newlines)
	3.6. String Constants
	3.7. List and Tuple Constants
	3.8. Dictionary Constants

	Chapter 4. Data Types
	4.1. Lists and Tuples

	Chapter 5. Operators
	5.1. Slices
	5.2. String Interpolation

	Chapter 6. Expression and Assignment Statements
	Chapter 7. Control Flow
	7.1. if
	7.2. while
	7.3. for
	7.4. return value
	7.5. break
	7.6. continue
	7.7. pass

	Chapter 8. Other Statements
	8.1. import name
	8.2. from name import *
	8.3. global name [, name …]
	8.4. del location
	8.5. assert value

	Chapter 9. Functions
	9.1. def

	Chapter 10. Standard Built-in Functions
	10.1. len(value)
	10.2. print(value1 , `value2, …, end='\n')
	10.3. sys.stdout.flush()
	10.4. ord(string)
	10.5. chr(number)
	10.6. abs(number)
	10.7. sqrt(number)

	Chapter 11. Common System Functions
	11.1. exit(value)
	11.2. sleep(seconds)
	11.3. monotonic()
	11.4. seed(seed)
	11.5. random()
	11.6. randrange(max)

	Chapter 12. Input Functions
	12.1. float(value)
	12.2. input(prompt)

	Chapter 13. Math Functions
	13.1. Number-theoretic and representation functions
	13.2. Power and logarithmic functions
	13.3. Trigonometric functions
	13.4. Angular conversion
	13.5. Hyperbolic functions
	13.6. Special functions
	13.7. Mathematical constants

	Chapter 14. GPIO Functions
	14.1. talkto(pin)
	14.2. setpower(power)
	14.3. setleft()
	14.4. setright()
	14.5. on()
	14.6. off()
	14.7. onfor(seconds)
	14.8. read(pin)
	14.9. pullnone(pin)
	14.10. pullup(pin)
	14.11. pulldown(pin)
	14.12. stopall()
	14.13. neopixel(pixels)
	14.14. tone(frequency)
	14.15. tonefor(frequency , seconds)
	14.16. Musical note constants

	Chapter 15. EEPROM built-in functions
	15.1. eeprom.write()
	15.2. eeprom.show()
	15.3. eeprom.load()
	15.4. eeprom.erase()
	15.5. reset()

	Chapter 16. Temperature Conversion Function
	16.1. temperature(sensorvalue)

	Chapter 17. Curses built-in functions
	17.1. curses.initscr()
	17.2. curses.endwin()
	17.3. curses.noecho(), curses.echo(), curses.cbreak(), curses.nocbreak()
	17.4. stdscr.nodelay(nodelay)
	17.5. stdscr.erase()
	17.6. stdscr.addstr(row , column , string)
	17.7. stdscr.move(row , column)
	17.8. stdscr.refresh()
	17.9. stdscr.getch()

	Chapter 18. Snek Development Environment
	18.1. Starting Snekde
	18.2. Basic Navigation
	18.3. Connecting to a Device
	18.4. Getting and Putting Programs to a Device
	18.5. Loading and Saving Programs to the Host

	Appendix A: Snek on snekboard
	Appendix B: Snek on Arduino Duemilanove, LilyPad, Nano and Uno
	B.1. Installing Optiboot on ATMega 328 boards
	B.2. Installing Snek on ATMega 328 boards

	Appendix C: Snek on Adafruit ItsyBitsy and the Crowd Supply µduino
	Appendix D: Snek on Adafruit ItsyBitsy M0
	Appendix E: Snek on Arduino Mega
	Appendix F: Snek on Arduino Nano Every
	Appendix G: Snek on Metro M0 Express
	Appendix H: Snek on Feather M0 Express
	Appendix I: Snek on Adafruit Crickit
	Appendix J: Snek on Adafruit Circuit Playground Express
	Appendix K: Snek on Arduino SA Nano 33 IoT
	Appendix L: Snek on Lego EV3
	Index

