Snek Lesson #2: The Line Bug

Table of Contents

LI CBNS e . 1
ACKNOWIEdgMEeNtS . .. 1
T.The Line BUg oo 2
1.1.Sensing the Line ... 3
1.2.Moving The BUg 4
1.3.Testingand Debugging 8
2.Building The Line Bug 10
2. S e T e 10
2.2, P 2 11
2.3, e B 12
S U <] 13
0 TR = o 1 T 14
2.6.StEP B . . 15
2.7 S P 7 16
2.8, S P B e 17
2.0, St O . i 18
200, Step 0. Lo 19
2.0 Step T e 20
B 1S < o 21
208, S e 13 22
204, Step T4 . 23
2.5, SteP 15 . 24
2,06, 5P 16 . . 25
3.Wiring The Line BUE.o 26
Appendix A: The Line Bug Program 26
License

Copyright © 2020 Keith Packard, Michael Ward

This document is released under the terms of the GNU General Public License, Version 3 or later
[https://www.gnu.org/licenses/gpl-3.0.en.htmi]

Acknowledgments

Thanks to Michael Ward for writing this up.

GNU General Public License Version 3 or later 1

https://www.gnu.org/licenses/gpl-3.0.en.html

2 Snek Lesson #2

Keith Packard
keithp@keithp.com
https://keithp.com

1. The Line Bug

This lesson contains instructions for building and programming a “Line Bug”, a little mobile robot
(bug) to follow a line. There may already be a bug built and ready for you to program, but if not,
they are not hard to construct. Instructions below show you how to build one that looks like this:

Important features:

e Two motors to move the bug, one for each wheel.

2 © 2019 Keith Packard

mailto:keithp@keithp.com
https://keithp.com

e One IR light sensor: glued to the blue brick

o Skid plates on the bottom mean the surface must be flat!

There are various strategies for solving the challenge of getting the line bug to follow the line (some
of which you can pursue all the way to advanced control projects through independent study).
However all of them involve sensing the line (a good place to start) and controlling the wheels to
keep the bug (and more importantly, the sensors) following the line:

o How will you detect the line? (Try it!)

o How will you move the bug based on this? (Start small and keep testing!)

1.1. Sensing the Line

To start you'll need a surface with a line, a light sensor, and some code to read and print light
sensor values. You might use a white surface with a black line, or a black surface with a white line.
The line needs to be thick enough to detect the line as the bug moves: 3/4 of an inch or more.
Whatever your intended track, begin by testing the light sensor using something like this (use
<Ctrl>C to stop):

while True:
print(read(Al))
sleep(1)

Consider:

¢ Sensor values will depend on light reflected from the surfaces (which depends on how much
light there is in the area). To make your program less sensitive to this, the IR light sensor has its
own built-in IR light source.

e Sensor values will vary. Read a number of different values for the line and use a typical or
average value. Do the same for the background. Use these to figure out a threshold half way
between the two. [Extensions: Use a well named variable for the threshold, use snek to
compute average values and threshold, automate your bug to learn these values ...]

¢ Using functions and variables to organize and document the code. One strategy is to name the
condition and then return True or False to indicate the condition, such as OnLine() or
OverTape().
You might get values like these:

Table 1. Light Sensor Sample Values

White Board Black Tape
0.05225885 0.8752137
0.05177045 0.8742369
0.05299145 0.8739927

GNU General Public License Version 3 or later 3

4 Snek Lesson #2

White Board Black Tape
0.05299145 0.8727717
0.05201465 0.8737485
0.05225885 0.8735043

Values for the white board are around 0.05, values for the black tape are near 0.87 A reasonable
threshold would be about halfway between, or 0.45. Code to detect the difference could be as
simple as this:

if read(Al) < 0.45:
print(“board”)
else:
print(“tape”)

On the other hand, for code that others (including your future self) can more easily understand,
test, and tweak, create names for values at the beginning of the program:

LightSensor = Al
TapeThreshold = 0.45

Then, define a well-named function to use them:

def OnTape():
return(read(LightSensor) > TapeThreshold)

and use it in later code like this:

if OnTape():
print(“tape”)

else:
print(“board”)

1.2. Moving The Bug

How can we keep the bug moving along the line? What if the line is really wide? Let’s take this to the
extreme: half a rectangle that's white and the other half black. This makes it clear that what is really
needed is to follow the edge between the two.

4 © 2019 Keith Packard

So, how to follow the edge? This is easier if the edge is near the sensor (and we allow the bug to
turn completely around). Just turn the bug until it finds the line. Then what? This is where you either
try it yourself, play around and figure it out, or | help you think about it here. For those of you that
want to figure it out yourself, when you find the line just stop the bug and take a look and think
about it. Or brainstorm with someone. Your test code might look something like this:

talkto(M1)

setright()

setpower(1l)

on()

while not OnTape():
pass

off()

If you want to proceed this way, | suggest that you make it easier to experiment by organizing with
variables and functions as in the last section. Use two functions, one to turn the bug left, the other
to turn it right, and get them to work so that each turn moves the bug toward the sensor:

RightWheel = M1
LeftWheel = M3
Speed = 1

def StartLeftTurn():
talkto(LeftWheel)
off()
talkto(RightWheel)
setright()
setpower(Speed)
on()

def StartRightTurn():
talkto(RightWheel)
off()
talkto(LeftWheel)
setleft()
setpower(Speed)
on()

GNU General Public License Version 3 or later 5

6 Snek Lesson #2

Figure 1. Left Turn

To keep things simple, turn only one wheel at a time. Also notice the exceedingly specific function
names. They remind us that they only start a turn and do not complete one. They leave the bug
turning. After you get each function working (turn the car upside down to test), control the bug with

them at the command line. To stop a turn, just type off (). Experiment with a sequence like this
that uses the sensor to both start the turn, and complete it:

while OnTape():
StartLeftTurn()
else:
off()

Give them a try. As long as both turns move the bug in the sensor direction, eventually you'll come
across the working strategy of alternating the turns and alternating the condition:

while OnTape():
StartLeftTurn()
else:
off()
while not OnTape():

6 © 2019 Keith Packard

StartRightTurn()
else:
off()

Figure 2. Right Turn

The first stage solution can be had by doing this over and over again (and since the turn functions
turn off the other motor we leave that part out):

def LineBug():
while True:
while OnTape():
StartLeftTurn()

while not OnTape():
StartRightTurn()

Once you have defined this function, you can test it at the command line by entering: LineBug().
Use Ctrl + C to break out of the loop. When you are ready to test it without the USB connection,
add the call to"LineBug()® as the last line of the program, with a blank line above it and at the

GNU General Public License Version 3 or later

8 Snek Lesson #2

leftmost column. Then pick up the line bug (so it does not run off the edge of the desk and crash
apart) and Put the program to write it to the snekboard. If all goes well, the program will start
rotating a wheel, disconnect the USB cable, and test the it on your course.

1.3. Testing and Debugging

In addition to making code more understandable, using functions and variables (as demonstrated
in the last couple of sections) helps us test, tune, and debug1 our code as well. One of the biggest
advantages is that we end up testing smaller segments of code that have less to do and make it
easier to find where and what is going unexpectedly. Also, by using variables, we can tweak things
without having to change the code we just got working! You can just change Speed and then rerun
LineBug() to see what happens.

Using Well Named Variables and Functions:

o Makes the code more understandable.
o Makes the code easier to test and debug.
e Makes it easier to try ideas.

¢ Builds a language for communicating your ideas.

Nevertheless, even using these strategies, things often still go wrong. The first step of debugging is
to think about what the code is doing in detail (see Optimizing Code). If that doesn't do the trick,
print things that tell you what the code is doing (so you can check it against what you think it should
be doing)! The basic idea is to print out what the code is doing at strategic points (often printing out
key values as well):

def LineBug():
while True:
print(“Turn left while on tape.”)
while OnTape():
StartLeftTurn()

print(“Turn right while off tape.”)
while not OnTape():
StartRightTurn()

Until you start writing code based on ideas not easily visible from the code itself, you are better off
using meaningful variable and function names than writing lots of comments. Since comments are
not executed, tested, and subsequently corrected, they often are wrong. Nevertheless, we'll use a
few comments (once you get your line bug working) and keep them around for both description
and future debugging:

def LineBug():

8 © 2019 Keith Packard

while True:
#print (“Turn left while on tape.”)
while OnTape():

StartLeftTurn()

#print(“Turn right while off tape.”)

while not OnTape():
StartRightTurn()

GNU General Public License Version 3 or later

10 Snek Lesson #2

2. Building The Line Bug

Follow the next few pages to complete the construction of your line bug. For the wheels, you can
use any that will fit on the axles and not rub on the 8-tooth gears.

2.1.Step 1

Part Description Color Count

Electric Power Functions 2.0 Medium Motor Light Grey 1

Technic Pin with Friction Black 2

10 © 2019 Keith Packard

11

2.2. Step 2

Part Description Color Count
Technic Brick 1 x 12 with Holes Bright Light 1
Yellow
Technic Axle 3 Light Grey 1

GNU General Public License Version 3 or later 11

12 Snek Lesson #2

2.3. Step 3

Part Description Color Count
Technic Gear 8 Tooth Light Grey 1

12 © 2019 Keith Packard

2.4, Step 4

Part Description Color

Technic Axle 5

s

@ Technic Bush with Two Flanges

GNU General Public License Version 3 or later

Black

Light Grey

Count

13

13

14 Snek Lesson #2

2.5.Step 5

Part Description Color Count
Technic Gear 24 Tooth with Single Axle Hole Light Grey 1

=Technic Bush with Two Flanges Light Grey 1

14 © 2019 Keith Packard

2.6. Step 6

Part Description Color

Electric Power Functions 2.0 Medium Motor

Technic Pin with Friction

GNU General Public License Version 3 or later

Light Grey

Black

Count
1

15

15

16 Snek Lesson #2

2.7.Step 7

Part Description

Technic Brick 1 x 12 with Holes

Technic Axle 3

16 © 2019 Keith Packard

Color

Bright Light
Yellow

Light Grey

Count

2.8. Step 8

Part Description

Color

Technic Gear 8 Tooth

GNU General Public License Version 3 or later

Light Grey

Count
1

17

17

18 Snek Lesson #2

2.9.Step 9

Part Description Color Count

\} Technic Axle 5 Black 1

ﬁ Technic Bush with Two Flanges Light Grey 1

18 © 2019 Keith Packard

2.10. Step 10

Part Description Color

Technic Gear 24 Tooth with Single Axle Hole

=Technic Bush with Two Flanges

GNU General Public License Version 3 or later

Light Grey

Light Grey

Count

19

19

20 Snek Lesson #2

2.11. Step 11

Part Description Color Count
Dish2x 2 Black 1

o Brick 2 x4 Bright Light 1
‘%3 Yellow
Technic Plate 2 x 8 with Holes Bright Light 1
Yellow

20 © 2019 Keith Packard

2.12. Step 12

Part Description
Dish2x 2

Brick 2 x4

Technic Plate 2 x 8 with Holes

21

Color Count
Black 1

Bright Light 1
Yellow

Bright Light 1
Yellow

GNU General Public License Version 3 or later 21

22 Snek Lesson #2

2.13. Step 13

Part Description Color Count

Technic Plate 2 x 8 with Holes Bright Light 2
Yellow

22 © 2019 Keith Packard

23

2.14. Step 14

Part Description Color Count

Technic Brick 1 x 12 with Holes Bright Light 2
Yellow

GNU General Public License Version 3 or later 23

24 Snek Lesson #2

2.15. Step 15

Part Description Color Count
Bracket2x2-2x2Up Light Grey 1

24 © 2019 Keith Packard

25

2.16. Step 16

Part Description Color Count
Wheel 25 x 28 VR with 35mm Diameter Rear Rim Light Grey 2
@ and Complete Cross Axle Hole with Tyre 28/ 38 x
28 VR

GNU General Public License Version 3 or later 25

26 Snek Lesson #2

3. Wiring The Line Bug

Attach the Snekboard to the top of the line bug.

Connect the motor driving the left wheel to M3 and the motor driving the right wheel to M1. If you
connect things differently, you'll need to adjust the values in the program.

Connect the light sensor to A1. Make sure you insert the connectors the right way, with the black
wire towards the center of the snekboard and the yellow or white wire towards the edge. Use hot
glue to attach the light sensor to a 4x2 brick and then attach the light sensor to the front of the line-
bug using the Light Gray 2 x 2 Bracket.

Appendix A: The Line Bug Program

Line Bug program

LightSensor = Al
TapeThreshold = 0.45

def OnTape():
return read(LightSensor) > TapeThreshold

RightWheel = M1
LeftWheel = M3
Speed = 1

def StartLeftTurn():
talkto(LeftWheel)
off()
talkto(RightWheel)
setright()
setpower(Speed)
on()

def StartRightTurn():
talkto(RightWheel)
off()

26 © 2019 Keith Packard

27

talkto(LeftWheel)
setleft()
setpower(Speed)
on()

def LineBug():
while True:
while OnTape():
StartLeftTurn()

while not OnTape():
StartRightTurn()

LineBug()

GNU General Public License Version 3 or later 27

	Snek Lesson #2: The Line Bug
	Table of Contents
	License
	Acknowledgments
	1. The Line Bug
	1.1. Sensing the Line
	1.2. Moving The Bug
	1.3. Testing and Debugging

	2. Building The Line Bug
	2.1. Step 1
	2.2. Step 2
	2.3. Step 3
	2.4. Step 4
	2.5. Step 5
	2.6. Step 6
	2.7. Step 7
	2.8. Step 8
	2.9. Step 9
	2.10. Step 10
	2.11. Step 11
	2.12. Step 12
	2.13. Step 13
	2.14. Step 14
	2.15. Step 15
	2.16. Step 16

	3. Wiring The Line Bug
	Appendix A: The Line Bug Program

